IDEAS home Printed from https://ideas.repec.org/p/ags/nccest/37620.html
   My bibliography  Save this paper

How Much Can Outlook Forecasts be Improved? An Application to the U.S. Hog Market

Author

Listed:
  • Colino, Evelyn V.
  • Irwin, Scott H.
  • Garcia, Philip

Abstract

This study investigates the predictability of outlook hog price forecasts released by Iowa State University relative to alternative market and time-series forecasts. The findings suggest that predictive performance of the outlook hog price forecasts can be improved substantially. Under RMSE, VARs estimated with Bayesian procedures that allow for some degree of flexibility and model averaging consistently outperform Iowa outlook estimates at all forecast horizons. Evidence from the encompassing tests, which are highly stringent tests of forecast performance, indicates that many price forecasts do provide incremental information relative to Iowa. Simple combinations of these models and outlook forecasts are able to reduce forecast errors by economically significant levels. The value of the forecast information is highest at the first horizon and then gradually declines.

Suggested Citation

  • Colino, Evelyn V. & Irwin, Scott H. & Garcia, Philip, 2008. "How Much Can Outlook Forecasts be Improved? An Application to the U.S. Hog Market," 2008 Conference, April 21-22, 2008, St. Louis, Missouri 37620, NCCC-134 Conference on Applied Commodity Price Analysis, Forecasting, and Market Risk Management.
  • Handle: RePEc:ags:nccest:37620
    DOI: 10.22004/ag.econ.37620
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/37620/files/confp19-08.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.37620?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Todd E. Clark & Michael W. McCracken, 2010. "Averaging forecasts from VARs with uncertain instabilities," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 5-29, January.
    2. Pesaran, M. Hashem & Timmermann, Allan, 2004. "How costly is it to ignore breaks when forecasting the direction of a time series?," International Journal of Forecasting, Elsevier, vol. 20(3), pages 411-425.
    3. Todd E. Clark & Michael W. McCracken, 2009. "Improving Forecast Accuracy By Combining Recursive And Rolling Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 50(2), pages 363-395, May.
    4. Manfredo, Mark R. & Sanders, Dwight R., 2004. "The Value of Public Price Forecasts: Additional Evidence in the Live Hog Market," Journal of Agribusiness, Agricultural Economics Association of Georgia, vol. 22(2), pages 1-13.
    5. Timmermann, Allan & Granger, Clive W. J., 2004. "Efficient market hypothesis and forecasting," International Journal of Forecasting, Elsevier, vol. 20(1), pages 15-27.
    6. Litterman, Robert B, 1986. "Forecasting with Bayesian Vector Autoregressions-Five Years of Experience," Journal of Business & Economic Statistics, American Statistical Association, vol. 4(1), pages 25-38, January.
    7. Harvey, David I & Leybourne, Stephen J & Newbold, Paul, 1998. "Tests for Forecast Encompassing," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(2), pages 254-259, April.
    8. De Gooijer, Jan G. & Hyndman, Rob J., 2006. "25 years of time series forecasting," International Journal of Forecasting, Elsevier, vol. 22(3), pages 443-473.
    9. Kling, John L. & Bessler, David A., 1985. "A comparison of multivariate forecasting procedures for economic time series," International Journal of Forecasting, Elsevier, vol. 1(1), pages 5-24.
    10. V. James Rhodes, 1995. "The Industrialization of Hog Production," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 17(2), pages 107-118.
    11. Todd E. Clark & Michael W. McCracken, 2007. "Forecasting with small macroeconomic VARs in the presence of instabilities," Finance and Economics Discussion Series 2007-41, Board of Governors of the Federal Reserve System (U.S.).
    12. Geweke, John & Whiteman, Charles, 2006. "Bayesian Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 1, pages 3-80, Elsevier.
    13. Stock, James H & Watson, Mark W, 1996. "Evidence on Structural Instability in Macroeconomic Time Series Relations," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(1), pages 11-30, January.
    14. Tashman, Leonard J., 2000. "Out-of-sample tests of forecasting accuracy: an analysis and review," International Journal of Forecasting, Elsevier, vol. 16(4), pages 437-450.
    15. Gerlow, Mary E. & Irwin, Scott H. & Liu, Te-Ru, 1993. "Economic evaluation of commodity price forecasting models," International Journal of Forecasting, Elsevier, vol. 9(3), pages 387-397, November.
    16. Trostle, Ronald, 2008. "Factors Contributing to Recent Increases in Food Commodity Prices (PowerPoint)," Seminars 43902, USDA Economists Group.
    17. Pesaran, M. Hashem & Timmermann, Allan, 2002. "Market timing and return prediction under model instability," Journal of Empirical Finance, Elsevier, vol. 9(5), pages 495-510, December.
    18. Graham Elliott & Allan Timmermann, 2016. "Economic Forecasting," Economics Books, Princeton University Press, edition 1, number 10740.
    19. Michael Boehlje, 1992. "Alternative models of structural change in agriculture and related industries," Agribusiness, John Wiley & Sons, Ltd., vol. 8(3), pages 219-231.
    20. Wang, Zijun & Bessler, David A., 2004. "Forecasting performance of multivariate time series models with full and reduced rank: an empirical examination," International Journal of Forecasting, Elsevier, vol. 20(4), pages 683-695.
    21. Jon A. Brandt & David A. Bessler, 1981. "Composite Forecasting: An Application with U.S. Hog Prices," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 63(1), pages 135-140.
    22. Clements,Michael & Hendry,David, 1998. "Forecasting Economic Time Series," Cambridge Books, Cambridge University Press, number 9780521634809.
    23. Swanson, Norman R. & White, Halbert, 1997. "Forecasting economic time series using flexible versus fixed specification and linear versus nonlinear econometric models," International Journal of Forecasting, Elsevier, vol. 13(4), pages 439-461, December.
    24. Sanders, Dwight R. & Manfredo, Mark R., 2003. "USDA Livestock Price Forecasts: A Comprehensive Evaluation," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 28(2), pages 1-19, August.
    25. McBride, William D. & Key, Nigel D., 2003. "Economic And Structural Relationships In U.S. Hog Production," Agricultural Economic Reports 33971, United States Department of Agriculture, Economic Research Service.
    26. Granger, C. W. J. & Newbold, Paul, 1986. "Forecasting Economic Time Series," Elsevier Monographs, Elsevier, edition 2, number 9780122951831 edited by Shell, Karl.
    27. Sims, Christopher A, 1980. "Macroeconomics and Reality," Econometrica, Econometric Society, vol. 48(1), pages 1-48, January.
    28. Richard E. Just & Gordon C. Rausser, 1981. "Commodity Price Forecasting with Large-Scale Econometric Models and the Futures Market," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 63(2), pages 197-208.
    29. Evelyn V. Colino & Scott H. Irwin, 2010. "Outlook vs. Futures: Three Decades of Evidence in Hog and Cattle Markets," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 92(1), pages 1-15.
    30. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
    31. Dwight R. Sanders & Mark R. Manfredo, 2005. "Forecast Encompassing as the Necessary Condition to Reject Futures Market Efficiency: Fluid Milk Futures," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 87(3), pages 610-620.
    32. Timmermann, Allan, 2006. "Forecast Combinations," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 4, pages 135-196, Elsevier.
    33. James H. Stock & Mark W.Watson, 2003. "Forecasting Output and Inflation: The Role of Asset Prices," Journal of Economic Literature, American Economic Association, vol. 41(3), pages 788-829, September.
    34. David A. Bessler & John L. Kling, 1986. "Forecasting Vector Autoregressions with Bayesian Priors," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 68(1), pages 144-151.
    35. Nerlove, Marc & Grether, David M. & Carvalho, José L., 1979. "Analysis of Economic Time Series," Elsevier Monographs, Elsevier, edition 1, number 9780125157506 edited by Shell, Karl.
    36. G. Elliott & C. Granger & A. Timmermann (ed.), 2006. "Handbook of Economic Forecasting," Handbook of Economic Forecasting, Elsevier, edition 1, volume 1, number 1, December.
    37. Fildes, Robert, 2006. "The forecasting journals and their contribution to forecasting research: Citation analysis and expert opinion," International Journal of Forecasting, Elsevier, vol. 22(3), pages 415-432.
    38. Mark W. Watson & James H. Stock, 2004. "Combination forecasts of output growth in a seven-country data set," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(6), pages 405-430.
    39. Litterman, Robert, 1986. "Forecasting with Bayesian vector autoregressions -- Five years of experience : Robert B. Litterman, Journal of Business and Economic Statistics 4 (1986) 25-38," International Journal of Forecasting, Elsevier, vol. 2(4), pages 497-498.
    40. Zapata, Hector O. & Garcia, Philip, 1990. "Price Forecasting With Time-Series Methods And Nonstationary Data: An Application To Monthly U.S. Cattle Prices," Western Journal of Agricultural Economics, Western Agricultural Economics Association, vol. 15(1), pages 1-10, July.
    41. Keating, John W., 2000. "Macroeconomic Modeling with Asymmetric Vector Autoregressions," Journal of Macroeconomics, Elsevier, vol. 22(1), pages 1-28, January.
    42. William G. Tomek, 1997. "Commodity Futures Prices as Forecasts," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 19(1), pages 23-44.
    43. Bessler, David A. & Brandt, Jon A., 1992. "An analysis of forecasts of livestock prices," Journal of Economic Behavior & Organization, Elsevier, vol. 18(2), pages 249-263, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaojie Xu, 2020. "Corn Cash Price Forecasting," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(4), pages 1297-1320, August.
    2. Xiaojie Xu, 2017. "Short-run price forecast performance of individual and composite models for 496 corn cash markets," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(14), pages 2593-2620, October.
    3. Rossi, Barbara, 2013. "Advances in Forecasting under Instability," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1203-1324, Elsevier.
    4. Todd E. Clark & Michael W. McCracken, 2006. "Forecasting of small macroeconomic VARs in the presence of instabilities," Research Working Paper RWP 06-09, Federal Reserve Bank of Kansas City.
    5. Prasad S Bhattacharya & Dimitrios D Thomakos, 2011. "Improving forecasting performance by window and model averaging," CAMA Working Papers 2011-05, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    6. Henzel, Steffen R. & Mayr, Johannes, 2013. "The mechanics of VAR forecast pooling—A DSGE model based Monte Carlo study," The North American Journal of Economics and Finance, Elsevier, vol. 24(C), pages 1-24.
    7. Evelyn V. Colino & Scott H. Irwin, 2010. "Outlook vs. Futures: Three Decades of Evidence in Hog and Cattle Markets," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 92(1), pages 1-15.
    8. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    9. Karlsson, Sune, 2013. "Forecasting with Bayesian Vector Autoregression," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 791-897, Elsevier.
    10. Mayr, Johannes, 2010. "Forecasting Macroeconomic Aggregates," Munich Dissertations in Economics 11140, University of Munich, Department of Economics.
    11. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    12. David Bolder & Yuliya Romanyuk, 2008. "Combining Canadian Interest-Rate Forecasts," Staff Working Papers 08-34, Bank of Canada.
    13. De Gooijer, Jan G. & Hyndman, Rob J., 2006. "25 years of time series forecasting," International Journal of Forecasting, Elsevier, vol. 22(3), pages 443-473.
    14. Jan G. De Gooijer & Rob J. Hyndman, 2005. "25 Years of IIF Time Series Forecasting: A Selective Review," Monash Econometrics and Business Statistics Working Papers 12/05, Monash University, Department of Econometrics and Business Statistics.
    15. David Hendry & Michael P. Clements, 2010. "Forecasting from Mis-specified Models in the Presence of Unanticipated Location Shifts," Economics Series Working Papers 484, University of Oxford, Department of Economics.
    16. Todd E. Clark & Michael W. McCracken, 2010. "Averaging forecasts from VARs with uncertain instabilities," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 5-29, January.
    17. Knut Are Aastveit & Karsten R. Gerdrup & Anne Sofie Jore & Leif Anders Thorsrud, 2014. "Nowcasting GDP in Real Time: A Density Combination Approach," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(1), pages 48-68, January.
    18. Duncan, Roberto & Martínez-García, Enrique, 2019. "New perspectives on forecasting inflation in emerging market economies: An empirical assessment," International Journal of Forecasting, Elsevier, vol. 35(3), pages 1008-1031.
    19. Barbara Rossi, 2019. "Forecasting in the presence of instabilities: How do we know whether models predict well and how to improve them," Economics Working Papers 1711, Department of Economics and Business, Universitat Pompeu Fabra, revised Jul 2021.
    20. Timmermann, Allan, 2006. "Forecast Combinations," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 4, pages 135-196, Elsevier.

    More about this item

    Keywords

    Agricultural Finance;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:nccest:37620. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/dauiuus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/dauiuus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.