IDEAS home Printed from https://ideas.repec.org/p/ags/nccest/37620.html
   My bibliography  Save this paper

How Much Can Outlook Forecasts be Improved? An Application to the U.S. Hog Market

Author

Listed:
  • Colino, Evelyn V.
  • Irwin, Scott H.
  • Garcia, Philip

Abstract

This study investigates the predictability of outlook hog price forecasts released by Iowa State University relative to alternative market and time-series forecasts. The findings suggest that predictive performance of the outlook hog price forecasts can be improved substantially. Under RMSE, VARs estimated with Bayesian procedures that allow for some degree of flexibility and model averaging consistently outperform Iowa outlook estimates at all forecast horizons. Evidence from the encompassing tests, which are highly stringent tests of forecast performance, indicates that many price forecasts do provide incremental information relative to Iowa. Simple combinations of these models and outlook forecasts are able to reduce forecast errors by economically significant levels. The value of the forecast information is highest at the first horizon and then gradually declines.

Suggested Citation

  • Colino, Evelyn V. & Irwin, Scott H. & Garcia, Philip, 2008. "How Much Can Outlook Forecasts be Improved? An Application to the U.S. Hog Market," 2008 Conference, April 21-22, 2008, St. Louis, Missouri 37620, NCCC-134 Conference on Applied Commodity Price Analysis, Forecasting, and Market Risk Management.
  • Handle: RePEc:ags:nccest:37620
    as

    Download full text from publisher

    File URL: http://ageconsearch.umn.edu/record/37620/files/confp19-08.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Todd E. Clark & Michael W. McCracken, 2010. "Averaging forecasts from VARs with uncertain instabilities," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 5-29.
    2. Pesaran, M. Hashem & Timmermann, Allan, 2004. "How costly is it to ignore breaks when forecasting the direction of a time series?," International Journal of Forecasting, Elsevier, vol. 20(3), pages 411-425.
    3. Todd E. Clark & Michael W. McCracken, 2009. "Improving Forecast Accuracy By Combining Recursive And Rolling Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 50(2), pages 363-395, May.
    4. Manfredo, Mark R. & Sanders, Dwight R., 2004. "The Value of Public Price Forecasts: Additional Evidence in the Live Hog Market," Journal of Agribusiness, Agricultural Economics Association of Georgia, vol. 0(Number 2), pages 1-13.
    5. Timmermann, Allan & Granger, Clive W. J., 2004. "Efficient market hypothesis and forecasting," International Journal of Forecasting, Elsevier, vol. 20(1), pages 15-27.
    6. Litterman, Robert B, 1986. "Forecasting with Bayesian Vector Autoregressions-Five Years of Experience," Journal of Business & Economic Statistics, American Statistical Association, vol. 4(1), pages 25-38, January.
    7. Harvey, David I & Leybourne, Stephen J & Newbold, Paul, 1998. "Tests for Forecast Encompassing," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(2), pages 254-259, April.
    8. Kling, John L. & Bessler, David A., 1985. "A comparison of multivariate forecasting procedures for economic time series," International Journal of Forecasting, Elsevier, vol. 1(1), pages 5-24.
    9. V. James Rhodes, 1995. "The Industrialization of Hog Production," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 17(2), pages 107-118.
    10. Todd E. Clark & Michael W. McCracken, 2007. "Forecasting with small macroeconomic VARs in the presence of instabilities," Finance and Economics Discussion Series 2007-41, Board of Governors of the Federal Reserve System (U.S.).
    11. Geweke, John & Whiteman, Charles, 2006. "Bayesian Forecasting," Handbook of Economic Forecasting, Elsevier.
    12. Stock, James H & Watson, Mark W, 1996. "Evidence on Structural Instability in Macroeconomic Time Series Relations," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(1), pages 11-30, January.
    13. Tashman, Leonard J., 2000. "Out-of-sample tests of forecasting accuracy: an analysis and review," International Journal of Forecasting, Elsevier, vol. 16(4), pages 437-450.
    14. Gerlow, Mary E. & Irwin, Scott H. & Liu, Te-Ru, 1993. "Economic evaluation of commodity price forecasting models," International Journal of Forecasting, Elsevier, vol. 9(3), pages 387-397, November.
    15. Trostle, Ronald, 2008. "Factors Contributing to Recent Increases in Food Commodity Prices (PowerPoint)," Seminars 43902, USDA Economists Group.
    16. Pesaran, M. Hashem & Timmermann, Allan, 2002. "Market timing and return prediction under model instability," Journal of Empirical Finance, Elsevier, vol. 9(5), pages 495-510, December.
    17. Graham Elliott & Allan Timmermann, 2016. "Economic Forecasting," Economics Books, Princeton University Press, edition 1, number 10740, October.
    18. Michael Boehlje, 1992. "Alternative models of structural change in agriculture and related industries," Agribusiness, John Wiley & Sons, Ltd., vol. 8(3), pages 219-231.
    19. Wang, Zijun & Bessler, David A., 2004. "Forecasting performance of multivariate time series models with full and reduced rank: an empirical examination," International Journal of Forecasting, Elsevier, vol. 20(4), pages 683-695.
    20. Clements,Michael & Hendry,David, 1998. "Forecasting Economic Time Series," Cambridge Books, Cambridge University Press, number 9780521634809, December.
    21. Swanson, Norman R. & White, Halbert, 1997. "Forecasting economic time series using flexible versus fixed specification and linear versus nonlinear econometric models," International Journal of Forecasting, Elsevier, vol. 13(4), pages 439-461, December.
    22. Sanders, Dwight R. & Manfredo, Mark R., 2003. "USDA Livestock Price Forecasts: A Comprehensive Evaluation," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 0(Number 2), pages 1-19, August.
    23. McBride, William D. & Key, Nigel D., 2003. "Economic And Structural Relationships In U.S. Hog Production," Agricultural Economics Reports 33971, United States Department of Agriculture, Economic Research Service.
    24. Granger, C. W. J. & Newbold, Paul, 1986. "Forecasting Economic Time Series," Elsevier Monographs, Elsevier, edition 2, number 9780122951831 edited by Shell, Karl, August.
    25. Sims, Christopher A, 1980. "Macroeconomics and Reality," Econometrica, Econometric Society, vol. 48(1), pages 1-48, January.
    26. Evelyn V. Colino & Scott H. Irwin, 2010. "Outlook vs. Futures: Three Decades of Evidence in Hog and Cattle Markets," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 92(1), pages 1-15.
    27. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
    28. Dwight R. Sanders & Mark R. Manfredo, 2005. "Forecast Encompassing as the Necessary Condition to Reject Futures Market Efficiency: Fluid Milk Futures," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 87(3), pages 610-620.
    29. Timmermann, Allan, 2006. "Forecast Combinations," Handbook of Economic Forecasting, Elsevier.
    30. James H. Stock & Mark W.Watson, 2003. "Forecasting Output and Inflation: The Role of Asset Prices," Journal of Economic Literature, American Economic Association, vol. 41(3), pages 788-829, September.
    31. David A. Bessler & John L. Kling, 1986. "Forecasting Vector Autoregressions with Bayesian Priors," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 68(1), pages 144-151.
    32. Nerlove, Marc & Grether, David M. & Carvalho, José L., 1979. "Analysis of Economic Time Series," Elsevier Monographs, Elsevier, edition 1, number 9780125157506 edited by Shell, Karl, August.
    33. Fildes, Robert, 2006. "The forecasting journals and their contribution to forecasting research: Citation analysis and expert opinion," International Journal of Forecasting, Elsevier, vol. 22(3), pages 415-432.
    34. Keating, John W., 2000. "Macroeconomic Modeling with Asymmetric Vector Autoregressions," Journal of Macroeconomics, Elsevier, vol. 22(1), pages 1-28, January.
    35. Bessler, David A. & Brandt, Jon A., 1992. "An analysis of forecasts of livestock prices," Journal of Economic Behavior & Organization, Elsevier, vol. 18(2), pages 249-263, July.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Agricultural Finance;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:nccest:37620. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (AgEcon Search). General contact details of provider: http://edirc.repec.org/data/dauiuus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.