IDEAS home Printed from https://ideas.repec.org/p/ptu/wpaper/w201009.html
   My bibliography  Save this paper

Tracking the US Business Cycle With a Singular Spectrum Analysis

Author

Listed:
  • António Rua
  • Miguel de Carvalho

Abstract

The monitoring of economic developments is an exercise of considerable importance forpolicy makers, namely, central banks and fiscal authorities as well as for other economic agents such as financial intermediaries, firms and households. However, the assessment of the business cycle is not an easy endeavor as the cyclical component is not an observable variable. In this paper we resort to singular spectrum analysis in order to disentangle the US GDP into several underlying components of interest. The business cycle indicator yielded through this method is shown to bear a resemblance with band-pass filtered output. As the end-of-sample behavior is typically a thorny issue in business cycle assessment, a real-time estimation exercise is here conducted to assess the reliability of the several filters. The obtained results suggest that the business cycle indicator proposed herein possesses a better revision performance than other filters commonly applied in the literature.

Suggested Citation

  • António Rua & Miguel de Carvalho, 2010. "Tracking the US Business Cycle With a Singular Spectrum Analysis," Working Papers w201009, Banco de Portugal, Economics and Research Department.
  • Handle: RePEc:ptu:wpaper:w201009
    as

    Download full text from publisher

    File URL: https://www.bportugal.pt/sites/default/files/anexos/papers/wp201009.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Marianne Baxter & Robert G. King, 1999. "Measuring Business Cycles: Approximate Band-Pass Filters For Economic Time Series," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 575-593, November.
    2. Athanasios Orphanides & Simon van Norden, 2002. "The Unreliability of Output-Gap Estimates in Real Time," The Review of Economics and Statistics, MIT Press, vol. 84(4), pages 569-583, November.
    3. Yogo, Motohiro, 2008. "Measuring business cycles: A wavelet analysis of economic time series," Economics Letters, Elsevier, vol. 100(2), pages 208-212, August.
    4. Hodrick, Robert J & Prescott, Edward C, 1997. "Postwar U.S. Business Cycles: An Empirical Investigation," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 29(1), pages 1-16, February.
    5. Andrew C. Harvey & Thomas M. Trimbur, 2003. "General Model-Based Filters for Extracting Cycles and Trends in Economic Time Series," The Review of Economics and Statistics, MIT Press, vol. 85(2), pages 244-255, May.
    6. Hassani, Hossein & Heravi, Saeed & Zhigljavsky, Anatoly, 2009. "Forecasting European industrial production with singular spectrum analysis," International Journal of Forecasting, Elsevier, vol. 25(1), pages 103-118.
    7. Lawrence J. Christiano & Terry J. Fitzgerald, 2003. "The Band Pass Filter," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 44(2), pages 435-465, May.
    8. Stock, James H. & Watson, Mark W., 1999. "Business cycle fluctuations in us macroeconomic time series," Handbook of Macroeconomics, in: J. B. Taylor & M. Woodford (ed.), Handbook of Macroeconomics, edition 1, volume 1, chapter 1, pages 3-64, Elsevier.
    9. Valle e Azevedo, Joao & Koopman, Siem Jan & Rua, Antonio, 2006. "Tracking the Business Cycle of the Euro Area: A Multivariate Model-Based Bandpass Filter," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 278-290, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Miguel de Carvalho & Gabriel Martos, 2022. "Modeling interval trendlines: Symbolic singular spectrum analysis for interval time series," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(1), pages 167-180, January.
    2. Svatopluk KAPOUNEK & Jitka POMĚNKOVÁ, 2013. "The endogeneity of optimum currency area criteria in the context of financial crisis: Evidence from the time-frequency domain analysis," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 59(9), pages 389-395.
    3. Andreas Groth & Michael Ghil & Stéphane Hallegatte & Patrice Dumas, 2015. "The role of oscillatory modes in US business cycles," OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2015(1), pages 63-81.
    4. Bógalo, Juan & Poncela, Pilar & Senra, Eva, 2017. "Automatic Signal Extraction for Stationary and Non-Stationary Time Series by Circulant SSA," MPRA Paper 76023, University Library of Munich, Germany.
    5. de Carvalho, Miguel & Rua, António, 2017. "Real-time nowcasting the US output gap: Singular spectrum analysis at work," International Journal of Forecasting, Elsevier, vol. 33(1), pages 185-198.
    6. Lisa Sella & Gianna Vivaldo & Andreas Groth & Michael Ghil, 2016. "Economic Cycles and Their Synchronization: A Comparison of Cyclic Modes in Three European Countries," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 12(1), pages 25-48, September.
    7. Paulo Canas Rodrigues & Olushina Olawale Awe & Jonatha Sousa Pimentel & Rahim Mahmoudvand, 2020. "Modelling the Behaviour of Currency Exchange Rates with Singular Spectrum Analysis and Artificial Neural Networks," Stats, MDPI, vol. 3(2), pages 1-21, June.
    8. Josu Arteche & Javier García‐Enríquez, 2022. "Singular spectrum analysis for value at risk in stochastic volatility models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(1), pages 3-16, January.
    9. Lisa Sella & Gianna Vivaldo & Andreas Groth & Michael Ghil, 2016. "Economic Cycles and Their Synchronization: A Comparison of Cyclic Modes in Three European Countries," Post-Print hal-01701122, HAL.
    10. Hassani, Hossein & Rua, António & Silva, Emmanuel Sirimal & Thomakos, Dimitrios, 2019. "Monthly forecasting of GDP with mixed-frequency multivariate singular spectrum analysis," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1263-1272.
    11. Hua, Jia-Chen & Roy, Sukesh & McCauley, Joseph L. & Gunaratne, Gemunu H., 2016. "Using dynamic mode decomposition to extract cyclic behavior in the stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 448(C), pages 172-180.
    12. Juan Bógalo & Pilar Poncela & Eva Senra, 2021. "Circulant Singular Spectrum Analysis to Monitor the State of the Economy in Real Time," Mathematics, MDPI, vol. 9(11), pages 1-17, May.
    13. Roman Marsalek & Jitka Pomenkova & Svatopluk Kapounek, 2014. "A Wavelet-Based Approach to Filter Out Symmetric Macroeconomic Shocks," Computational Economics, Springer;Society for Computational Economics, vol. 44(4), pages 477-488, December.
    14. Rocco S, Claudio M., 2013. "Singular spectrum analysis and forecasting of failure time series," Reliability Engineering and System Safety, Elsevier, vol. 114(C), pages 126-136.
    15. Hicham M. Hachem, 2017. "How Moderate was the Great Moderation and how Destabilizing is Secular Stagnation? Fiscal and monetary policy implications based on åvidence from US macro data," Economic Alternatives, University of National and World Economy, Sofia, Bulgaria, issue 2, pages 226-236, June.
    16. Papailias, Fotis & Thomakos, Dimitrios, 2017. "EXSSA: SSA-based reconstruction of time series via exponential smoothing of covariance eigenvalues," International Journal of Forecasting, Elsevier, vol. 33(1), pages 214-229.
    17. Coussin, Maximilien, 2022. "Singular spectrum analysis for real-time financial cycles measurement," Journal of International Money and Finance, Elsevier, vol. 120(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Carvalho, Miguel & Rua, António, 2017. "Real-time nowcasting the US output gap: Singular spectrum analysis at work," International Journal of Forecasting, Elsevier, vol. 33(1), pages 185-198.
    2. João Valle e Azevedo, 2007. "A Multivariate Band-Pass Filter," Working Papers w200717, Banco de Portugal, Economics and Research Department.
    3. Valle e Azevedo, João & Pereira, Ana, 2013. "Approximating and forecasting macroeconomic signals in real-time," International Journal of Forecasting, Elsevier, vol. 29(3), pages 479-492.
    4. Galimberti, Jaqueson K. & Moura, Marcelo L., 2016. "Improving the reliability of real-time output gap estimates using survey forecasts," International Journal of Forecasting, Elsevier, vol. 32(2), pages 358-373.
    5. Martyna Marczak & Víctor Gómez, 2017. "Monthly US business cycle indicators: a new multivariate approach based on a band-pass filter," Empirical Economics, Springer, vol. 52(4), pages 1379-1408, June.
    6. Orphanides, Athanasios & van Norden, Simon, 2005. "The Reliability of Inflation Forecasts Based on Output Gap Estimates in Real Time," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 37(3), pages 583-601, June.
    7. Alessandra Iacobucci & Alain Noullez, 2005. "A Frequency Selective Filter for Short-Length Time Series," Computational Economics, Springer;Society for Computational Economics, vol. 25(1), pages 75-102, February.
    8. Álvarez, Luis J. & Gómez-Loscos, Ana, 2018. "A menu on output gap estimation methods," Journal of Policy Modeling, Elsevier, vol. 40(4), pages 827-850.
    9. Joao Valle e Azevedo & Siem Jan Koopman & Antonio Rua, 2003. "Tracking Growth and the Business Cycle: a Stochastic Common Cycle Model for the Euro Area," Tinbergen Institute Discussion Papers 03-069/4, Tinbergen Institute.
    10. Arturo Estrella, 2007. "Extracting business cycle fluctuations: what do time series filters really do?," Staff Reports 289, Federal Reserve Bank of New York.
    11. Ard den Reijer, 2006. "The Dutch business cycle: which indicators should we monitor?," DNB Working Papers 100, Netherlands Central Bank, Research Department.
    12. Lubos Hanus & Lukas Vacha, 2015. "Business cycle synchronization of the Visegrad Four and the European Union," Working Papers IES 2015/19, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, revised Jul 2015.
    13. Drew Creal & Siem Jan Koopman & Eric Zivot, 2008. "The Effect of the Great Moderation on the U.S. Business Cycle in a Time-varying Multivariate Trend-cycle Model," Tinbergen Institute Discussion Papers 08-069/4, Tinbergen Institute.
    14. Hall, Viv B & Thomson, Peter, 2022. "A boosted HP filter for business cycle analysis: evidence from New Zealand’s small open economy," Working Paper Series 9473, Victoria University of Wellington, School of Economics and Finance.
    15. Luca Benati, 2001. "Band-pass filtering, cointegration, and business cycle analysis," Bank of England working papers 142, Bank of England.
    16. Richard Ashley & Randal Verbrugge, 2009. "Frequency Dependence in Regression Model Coefficients: An Alternative Approach for Modeling Nonlinear Dynamic Relationships in Time Series," Econometric Reviews, Taylor & Francis Journals, vol. 28(1-3), pages 4-20.
    17. Efe Can KILINÇ & Cafer Necat BERBEROĞLU, 2019. "The Relationship Between Saving, Profit Rates and Business CyclesAbstract:There are different approaches of economics schools on the sources, causes and determinants of business cycles. These approach," Sosyoekonomi Journal, Sosyoekonomi Society.
    18. Lawrence J. Christiano & Terry J. Fitzgerald, 2003. "The Band Pass Filter," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 44(2), pages 435-465, May.
    19. Nath, Hiranya K., 2016. "A note on the cyclical behavior of sectoral employment in the U.S," Economic Analysis and Policy, Elsevier, vol. 50(C), pages 52-61.
    20. Strohsal, Till & Proaño, Christian R. & Wolters, Jürgen, 2019. "Characterizing the financial cycle: Evidence from a frequency domain analysis," Journal of Banking & Finance, Elsevier, vol. 106(C), pages 568-591.

    More about this item

    JEL classification:

    • C50 - Mathematical and Quantitative Methods - - Econometric Modeling - - - General
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ptu:wpaper:w201009. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: DEE-NTD (email available below). General contact details of provider: https://edirc.repec.org/data/bdpgvpt.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.