IDEAS home Printed from https://ideas.repec.org/p/fip/fedmsr/84.html
   My bibliography  Save this paper

A random walk, Markov model for the distribution of time series

Author

Listed:
  • Robert B. Litterman

Abstract

This paper describes a technique for distributing quarterly time series across monthly values. The method generalizes an approach described by Fernandez (1981). The paper also presents results of a test of the accuracy of these two approaches and two standard procedures suggested by Chow and Lin (1971).

Suggested Citation

  • Robert B. Litterman, 1983. "A random walk, Markov model for the distribution of time series," Staff Report 84, Federal Reserve Bank of Minneapolis.
  • Handle: RePEc:fip:fedmsr:84
    as

    Download full text from publisher

    File URL: http://www.minneapolisfed.org/research/common/pub_detail.cfm?pb_autonum_id=365
    Download Restriction: no

    File URL: http://minneapolisfed.org/research/sr/sr84.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Chow, Gregory C & Lin, An-loh, 1971. "Best Linear Unbiased Interpolation, Distribution, and Extrapolation of Time Series by Related Series," The Review of Economics and Statistics, MIT Press, vol. 53(4), pages 372-375, November.
    2. Fernandez, Roque B, 1981. "A Methodological Note on the Estimation of Time Series," The Review of Economics and Statistics, MIT Press, vol. 63(3), pages 471-476, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jonathan Eaton & Samuel Kortum & Brent Neiman & John Romalis, 2016. "Trade and the Global Recession," American Economic Review, American Economic Association, vol. 106(11), pages 3401-3438, November.
    2. Campbell Leith & Jim Malley, 2007. "A Sectoral Analysis of Price-Setting Behavior in U.S. Manufacturing Industries," The Review of Economics and Statistics, MIT Press, vol. 89(2), pages 335-342, May.
    3. Massimo Gerli & Giovanni Marini, 2006. "Spatial and Temporal Time Series Conversion: A Consistent Estimator of the Error Variance-Covariance Matrix," Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2005(3), pages 373-405.
    4. Tommaso Proietti, 2006. "Temporal disaggregation by state space methods: Dynamic regression methods revisited," Econometrics Journal, Royal Economic Society, vol. 9(3), pages 357-372, November.
    5. Richard M. Todd, 1988. "Implementing Bayesian vector autoregressions," Working Papers 384, Federal Reserve Bank of Minneapolis.
    6. Pieroni, Luca & d'Agostino, Giorgio & Lorusso, Marco, 2008. "Can we declare military Keynesianism dead?," Journal of Policy Modeling, Elsevier, vol. 30(5), pages 675-691.
    7. Tommaso Proietti, 2004. "On the Estimation of Nonlinearly Aggregated Mixed Models," Econometrics 0411012, University Library of Munich, Germany.
    8. Tommaso Proietti, 2011. "Multivariate temporal disaggregation with cross-sectional constraints," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(7), pages 1455-1466, June.
    9. Bernardí Cabred & Jose Pavía, 1999. "EstimatingJ (>1) quarterly time series in fulfilling annual and quarterly constraints," International Advances in Economic Research, Springer;International Atlantic Economic Society, vol. 5(3), pages 339-349, August.
    10. Travaglini, Guido, 2010. "Supervised Principal Components and Factor Instrumental Variables. An Application to Violent CrimeTrends in the US, 1982-2005," MPRA Paper 22077, University Library of Munich, Germany.
    11. Askari, S. & Montazerin, N. & Zarandi, M.H. Fazel, 2015. "Forecasting semi-dynamic response of natural gas networks to nodal gas consumptions using genetic fuzzy systems," Energy, Elsevier, vol. 83(C), pages 252-266.
    12. Higgins, Patrick & Zha, Tao & Zhong, Wenna, 2016. "Forecasting China's economic growth and inflation," China Economic Review, Elsevier, vol. 41(C), pages 46-61.
    13. Wolfgang Polasek & Richard Sellner, 2008. "Spatial Chow-Lin Methods: Bayesian And Ml Forecast Comparisons," Working Paper series 38_08, Rimini Centre for Economic Analysis.
    14. Wenzel, Lars & Wolf, André, 2013. "Short-term forecasting with business surveys: Evidence for German IHK data at federal state level," HWWI Research Papers 140, Hamburg Institute of International Economics (HWWI).
    15. Gonzalo Camba-Mendez & Ana Lamo, 2004. "Short-term monitoring of fiscal policy discipline," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 19(2), pages 247-265.
    16. Huang, Yu-Lieh, 2012. "Measuring business cycles: A temporal disaggregation model with regime switching," Economic Modelling, Elsevier, vol. 29(2), pages 283-290.
    17. Jonas D. M. Fisher, 2002. "Technology shocks matter," Working Paper Series WP-02-14, Federal Reserve Bank of Chicago.
    18. Ana María Cerro & José Pineda, 2002. "Latin American growth cycles. Empirical evidence: 1960 - 2000," Estudios de Economia, University of Chile, Department of Economics, vol. 29(1 Year 20), pages 89-108, June.
    19. Raffaella Basile & Bruno Chiarini & Elisabetta Marzano, 2011. "Can we Rely upon Fiscal Policy Estimates in Countries with Unreported Production of 15 Per Cent (or more) of GDP?," CESifo Working Paper Series 3521, CESifo.
    20. Thomas Raffinot, 2007. "A monthly indicator of GDP for Euro-Area based on business surveys," Applied Economics Letters, Taylor & Francis Journals, vol. 14(4), pages 267-270.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fip:fedmsr:84. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/cfrbmus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (email available below). General contact details of provider: https://edirc.repec.org/data/cfrbmus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.