IDEAS home Printed from https://ideas.repec.org/a/vrs/offsta/v31y2015i4p627-647n6.html
   My bibliography  Save this article

Quarterly Regional GDP Flash Estimates by Means of Benchmarking and Chain Linking

Author

Listed:
  • Cuevas Ángel

    (Macroeconomic Research Department, Independent Authority for Fiscal Responsibility, José Abascal n° 2, 2ª planta 28003, Madrid, Spain.)

  • Quilis Enrique M.

    (Macroeconomic Research Department, Independent Authority for Fiscal Responsibility, José Abascal n° 2, 2ª planta 28003, Madrid, Spain.)

  • Espasa Antoni

    (Department of Statistics and Instituto Flores de Lemus, Universidad, Carlos III de Madrid, Calle Madrid 126, 28903 Madrid, Spain.)

Abstract

In this article we propose a methodology for estimating the GDP of a country’s different regions, providing quarterly profiles for the annual official observed data. Thus the article offers a new instrument for short-term monitoring that allows the analysts to quantify the degree of synchronicity among regional business cycles. Technically, we combine time-series models with benchmarking methods to process short-term quarterly indicators and to estimate quarterly regional GDPs ensuring their temporal and transversal consistency with the National Accounts data. The methodology addresses the issue of nonadditivity, explicitly taking into account the transversal constraints imposed by the chain-linked volume indexes used by the National Accounts, and provides an efficient combination of structural as well as short-term information. The methodology is illustrated by an application to the Spanish economy, providing real-time quarterly GDP estimates, that is, with a minimum compilation delay with respect to the national quarterly GDP. The estimated quarterly data are used to assess the existence of cycles shared among the Spanish regions.

Suggested Citation

  • Cuevas Ángel & Quilis Enrique M. & Espasa Antoni, 2015. "Quarterly Regional GDP Flash Estimates by Means of Benchmarking and Chain Linking," Journal of Official Statistics, Sciendo, vol. 31(4), pages 627-647, December.
  • Handle: RePEc:vrs:offsta:v:31:y:2015:i:4:p:627-647:n:6
    DOI: 10.1515/jos-2015-0038
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/jos-2015-0038
    Download Restriction: no

    File URL: https://libkey.io/10.1515/jos-2015-0038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Santos Silva, J. M. C. & Cardoso, F. N., 2001. "The Chow-Lin method using dynamic models," Economic Modelling, Elsevier, vol. 18(2), pages 269-280, April.
    2. Tommaso Proietti, 2006. "Temporal disaggregation by state space methods: Dynamic regression methods revisited," Econometrics Journal, Royal Economic Society, vol. 9(3), pages 357-372, November.
    3. Robert Lehmann & Klaus Wohlrabe, 2015. "Forecasting GDP at the Regional Level with Many Predictors," German Economic Review, Verein für Socialpolitik, vol. 16(2), pages 226-254, May.
    4. Polasek, Wolfgang & Sellner, Richard, 2010. "Spatial Chow-Lin Methods for Data Completion in Econometric Flow Models," Economics Series 255, Institute for Advanced Studies.
    5. Víctor Gómez & Agustín Maravall, 1998. "Guide for Using the Programs TRAMO and SEATS (Beta Version: December 1997)," Working Papers 9805, Banco de España.
    6. Di Fonzo, Tommaso, 1990. "The Estimation of M Disaggregate Time Series When Contemporaneous and Temporal Aggregates Are Known," The Review of Economics and Statistics, MIT Press, vol. 72(1), pages 178-182, February.
    7. Litterman, Robert B, 1983. "A Random Walk, Markov Model for the Distribution of Time Series," Journal of Business & Economic Statistics, American Statistical Association, vol. 1(2), pages 169-173, April.
    8. Chow, Gregory C & Lin, An-loh, 1971. "Best Linear Unbiased Interpolation, Distribution, and Extrapolation of Time Series by Related Series," The Review of Economics and Statistics, MIT Press, vol. 53(4), pages 372-375, November.
    9. Tommaso Proietti, 2011. "Multivariate temporal disaggregation with cross-sectional constraints," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(7), pages 1455-1466, June.
    10. Víctor Gómez & Agustín Maravall, 1998. "Automatic Modeling Methods for Univariate Series," Working Papers 9808, Banco de España.
    11. Fernandez, Roque B, 1981. "A Methodological Note on the Estimation of Time Series," The Review of Economics and Statistics, MIT Press, vol. 63(3), pages 471-476, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lehmann, Robert & Wikman, Ida, 2022. "Quarterly GDP Estimates for the German States," MPRA Paper 112642, University Library of Munich, Germany.
    2. Valter Giacinto & Libero Monteforte & Andrea Filippone & Francesco Montaruli & Tiziano Ropele, 2021. "ITER: A Quarterly Indicator of Regional Economic Activity in Italy," Italian Economic Journal: A Continuation of Rivista Italiana degli Economisti and Giornale degli Economisti, Springer;Società Italiana degli Economisti (Italian Economic Association), vol. 7(1), pages 129-147, March.
    3. Senra, Eva, 2017. "22 Years of inflation assessment and forecasting experience at the bulletin of EU & US inflation and macroeconomic analysis," DES - Working Papers. Statistics and Econometrics. WS 24678, Universidad Carlos III de Madrid. Departamento de Estadística.
    4. Gary Koop & Stuart McIntyre & James Mitchell & Aubrey Poon, 2020. "Regional output growth in the United Kingdom: More timely and higher frequency estimates from 1970," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(2), pages 176-197, March.
    5. Antoni Espasa & Eva Senra, 2017. "Twenty-Two Years of Inflation Assessment and Forecasting Experience at the Bulletin of EU & US Inflation and Macroeconomic Analysis," Econometrics, MDPI, vol. 5(4), pages 1-28, October.
    6. Priscila Espinosa & Jose M. Pavía, 2023. "Automation in Regional Economic Synthetic Index Construction with Uncertainty Measurement," Forecasting, MDPI, vol. 5(2), pages 1-19, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Quilis, Enrique M., 2011. "Combining benchmarking and chain-linking for short-term regional forecasting," DES - Working Papers. Statistics and Econometrics. WS ws114130, Universidad Carlos III de Madrid. Departamento de Estadística.
    2. José Casals & Miguel Jerez & Sonia Sotoca, 2009. "Modelling and forecasting time series sampled at different frequencies," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(4), pages 316-342.
    3. Massimo Gerli & Giovanni Marini, 2006. "Spatial and Temporal Time Series Conversion: A Consistent Estimator of the Error Variance-Covariance Matrix," Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2005(3), pages 373-405.
    4. Tommaso Proietti, 2011. "Multivariate temporal disaggregation with cross-sectional constraints," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(7), pages 1455-1466, June.
    5. Jürgen Bierbaumer & Sandra Bilek-Steindl, 2017. "Quarterly National Accounts – Manual for Austria. Description of Applied Methods and Data Sources," WIFO Studies, WIFO, number 60427, April.
    6. Huang, Yu-Lieh, 2012. "Measuring business cycles: A temporal disaggregation model with regime switching," Economic Modelling, Elsevier, vol. 29(2), pages 283-290.
    7. Kahouli, Sondès, 2011. "Re-examining uranium supply and demand: New insights," Energy Policy, Elsevier, vol. 39(1), pages 358-376, January.
    8. Valter Giacinto & Libero Monteforte & Andrea Filippone & Francesco Montaruli & Tiziano Ropele, 2021. "ITER: A Quarterly Indicator of Regional Economic Activity in Italy," Italian Economic Journal: A Continuation of Rivista Italiana degli Economisti and Giornale degli Economisti, Springer;Società Italiana degli Economisti (Italian Economic Association), vol. 7(1), pages 129-147, March.
    9. Marcus Scheiblecker & Sandra Bilek-Steindl & Michael Wüger, 2007. "Quarterly National Accounts Inventory of Austria. Description of Applied Methods and Data Sources," WIFO Studies, WIFO, number 37249, April.
    10. Luke Mosley & Idris Eckley & Alex Gibberd, 2021. "Sparse Temporal Disaggregation," Papers 2108.05783, arXiv.org, revised Oct 2022.
    11. Enrique M. Quilis, 2018. "Temporal disaggregation of economic time series: The view from the trenches," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 72(4), pages 447-470, November.
    12. Pieroni, Luca & d'Agostino, Giorgio & Lorusso, Marco, 2008. "Can we declare military Keynesianism dead?," Journal of Policy Modeling, Elsevier, vol. 30(5), pages 675-691.
    13. Laura Bisio & Filippo Moauro, 2018. "Temporal disaggregation by dynamic regressions: Recent developments in Italian quarterly national accounts," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 72(4), pages 471-494, November.
    14. Travaglini, Guido, 2010. "Supervised Principal Components and Factor Instrumental Variables. An Application to Violent CrimeTrends in the US, 1982-2005," MPRA Paper 22077, University Library of Munich, Germany.
    15. Wolfgang Polasek & Richard Sellner, 2008. "Spatial Chow-Lin Methods: Bayesian And Ml Forecast Comparisons," Working Paper series 38_08, Rimini Centre for Economic Analysis.
    16. Christian Caamaño-Carrillo & Sergio Contreras-Espinoza & Orietta Nicolis, 2023. "Reconstructing the Quarterly Series of the Chilean Gross Domestic Product Using a State Space Approach," Mathematics, MDPI, vol. 11(8), pages 1-14, April.
    17. Luke Mosley & Idris A. Eckley & Alex Gibberd, 2022. "Sparse temporal disaggregation," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(4), pages 2203-2233, October.
    18. Mateusz Pipień & Sylwia Roszkowska, 2015. "Szacunki kwartalnego PKB w polskich województwach," Gospodarka Narodowa. The Polish Journal of Economics, Warsaw School of Economics, issue 5, pages 145-169.
    19. Raffaella Basile & Bruno Chiarini & Elisabetta Marzano, 2011. "Can we Rely upon Fiscal Policy Estimates in Countries with Unreported Production of 15 Per Cent (or more) of GDP?," CESifo Working Paper Series 3521, CESifo.
    20. Cecilia Frale, "undated". "Do Surveys Help in Macroeconomic Variables Disaggregation and Estimation?," Working Papers wp2008-2, Department of the Treasury, Ministry of the Economy and of Finance.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:offsta:v:31:y:2015:i:4:p:627-647:n:6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.sciendo.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.