IDEAS home Printed from https://ideas.repec.org/a/ect/emjrnl/v9y2006i3p357-372.html
   My bibliography  Save this article

Temporal disaggregation by state space methods: Dynamic regression methods revisited

Author

Listed:
  • Tommaso Proietti

Abstract

The paper advocates the use of state space methods to deal with the problem of temporal disaggregation by dynamic regression models, which encompass the most popular techniques for the distribution of economic flow variables, such as Chow-Lin, Fernandez and Litterman. The state space methodology offers the generality that is required to address a variety of inferential issues that have not been dealt with previously. The paper contributes to the available literature in three ways: (i) it concentrates on the exact initialization of the different models, showing that this issue is of fundamental importance for the properties of the maximum likelihood estimates and for deriving encompassing autoregressive distributed lag models that nest exactly the traditional disaggregation models; (ii) it points out the role of diagnostics and revisions histories in judging the quality of the disaggregated estimates and (iii) it provides a thorough treatment of the Litterman model, explaining the difficulties commonly encountered in practice when estimating this model. Copyright Royal Economic Society 2006

Suggested Citation

  • Tommaso Proietti, 2006. "Temporal disaggregation by state space methods: Dynamic regression methods revisited," Econometrics Journal, Royal Economic Society, vol. 9(3), pages 357-372, November.
  • Handle: RePEc:ect:emjrnl:v:9:y:2006:i:3:p:357-372
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Engle, Robert & Granger, Clive, 2015. "Co-integration and error correction: Representation, estimation, and testing," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 39(3), pages 106-135.
    2. Hendry, David F & Mizon, Grayham E, 1978. "Serial Correlation as a Convenient Simplification, not a Nuisance: A Comment on a Study of the Demand for Money by the Bank of England," Economic Journal, Royal Economic Society, vol. 88(351), pages 549-563, September.
    3. Tommaso Proietti & Filippo Moauro, 2006. "Dynamic factor analysis with non‐linear temporal aggregation constraints," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 55(2), pages 281-300, April.
    4. N. G. Shephard & A. C. Harvey, 1990. "On The Probability Of Estimating A Deterministic Component In The Local Level Model," Journal of Time Series Analysis, Wiley Blackwell, vol. 11(4), pages 339-347, July.
    5. Palm, Franz C & Nijman, Theo E, 1984. "Missing Observations in the Dynamic Regression Model," Econometrica, Econometric Society, vol. 52(6), pages 1415-1435, November.
    6. Filippo Moauro & Giovanni Savio, 2005. "Temporal disaggregation using multivariate structural time series models," Econometrics Journal, Royal Economic Society, vol. 8(2), pages 214-234, July.
    7. Litterman, Robert B, 1983. "A Random Walk, Markov Model for the Distribution of Time Series," Journal of Business & Economic Statistics, American Statistical Association, vol. 1(2), pages 169-173, April.
    8. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178.
    9. Tommaso Proietti, 2004. "On the Estimation of Nonlinearly Aggregated Mixed Models," Econometrics 0411012, University Library of Munich, Germany.
    10. Chow, Gregory C & Lin, An-loh, 1971. "Best Linear Unbiased Interpolation, Distribution, and Extrapolation of Time Series by Related Series," The Review of Economics and Statistics, MIT Press, vol. 53(4), pages 372-375, November.
    11. Andrew Harvey & Chia‐Hui Chung, 2000. "Estimating the underlying change in unemployment in the UK," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 163(3), pages 303-309.
    12. James H. Stock & Mark W. Watson, 1988. "A Probability Model of The Coincident Economic Indicators," NBER Working Papers 2772, National Bureau of Economic Research, Inc.
    13. Fernandez, Roque B, 1981. "A Methodological Note on the Estimation of Time Series," The Review of Economics and Statistics, MIT Press, vol. 63(3), pages 471-476, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cecilia Frale, "undated". "Do Surveys Help in Macroeconomic Variables Disaggregation and Estimation?," Working Papers wp2008-2, Department of the Treasury, Ministry of the Economy and of Finance.
    2. Marcellino, Massimiliano & Proietti, Tommaso & Frale, Cecilia & Mazzi, Gian Luigi, 2008. "A Monthly Indicator of the Euro Area GDP," CEPR Discussion Papers 7007, C.E.P.R. Discussion Papers.
    3. Moauro, Filippo, 2010. "A monthly indicator of employment in the euro area: real time analysis of indirect estimates," MPRA Paper 27797, University Library of Munich, Germany, revised 30 Dec 2010.
    4. Laura Bisio & Filippo Moauro, 2018. "Temporal disaggregation by dynamic regressions: Recent developments in Italian quarterly national accounts," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 72(4), pages 471-494, November.
    5. Cecilia Frale & Massimiliano Marcellino & Gian Luigi Mazzi & Tommaso Proietti, 2010. "Survey data as coincident or leading indicators," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(1-2), pages 109-131.
    6. Santos Silva, J. M. C. & Cardoso, F. N., 2001. "The Chow-Lin method using dynamic models," Economic Modelling, Elsevier, vol. 18(2), pages 269-280, April.
    7. Proietti, Tommaso, 2008. "Estimation of Common Factors under Cross-Sectional and Temporal Aggregation Constraints: Nowcasting Monthly GDP and its Main Components," MPRA Paper 6860, University Library of Munich, Germany.
    8. John McDermott & Viv B. Hall, "undated". "A quarterly Post-World War II Real GDP Series for New Zealand," Reserve Bank of New Zealand Discussion Paper Series DP2009/12, Reserve Bank of New Zealand.
    9. Ledenyov, Dimitri O. & Ledenyov, Viktor O., 2015. "Wave function method to forecast foreign currencies exchange rates at ultra high frequency electronic trading in foreign currencies exchange markets," MPRA Paper 67470, University Library of Munich, Germany.
    10. Vosen, Simeon & Schmidt, Torsten, 2012. "A monthly consumption indicator for Germany based on Internet search query data," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 19(7), pages 683-687.
    11. Nijman, Theo E & Palm, Franz C, 1990. "Predictive Accuracy Gain from Disaggregate Sampling in ARIMA Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 8(4), pages 405-415, October.
    12. Tommaso Proietti, 2004. "On the Estimation of Nonlinearly Aggregated Mixed Models," Econometrics 0411012, University Library of Munich, Germany.
    13. Christian Caamaño-Carrillo & Sergio Contreras-Espinoza & Orietta Nicolis, 2023. "Reconstructing the Quarterly Series of the Chilean Gross Domestic Product Using a State Space Approach," Mathematics, MDPI, vol. 11(8), pages 1-14, April.
    14. Huang, Yu-Lieh, 2012. "Measuring business cycles: A temporal disaggregation model with regime switching," Economic Modelling, Elsevier, vol. 29(2), pages 283-290.
    15. David Aristei & Luca Pieroni, 2005. "Estimating the Role of Government Expenditure in Long-run Consumption," Quaderni del Dipartimento di Economia, Finanza e Statistica 13/2005, Università di Perugia, Dipartimento Economia.
    16. Teresa Leal & Diego Pedregal & Javier Pérez, 2011. "Short-term monitoring of the Spanish government balance," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 2(1), pages 97-119, March.
    17. Ledenyov, Dimitri O. & Ledenyov, Viktor O., 2013. "On the Stratonovich – Kalman - Bucy filtering algorithm application for accurate characterization of financial time series with use of state-space model by central banks," MPRA Paper 50235, University Library of Munich, Germany.
    18. Diego J. Pedregal & Javier J. Pérez & Antonio Sánchez Fuentes, 2014. "A Tookit to strengthen Government," Hacienda Pública Española / Review of Public Economics, IEF, vol. 211(4), pages 117-146, December.
    19. Willie Lahari & Alfred A. Haug & Arlene Garces-Ozanne, 2011. "Estimating Quarterly Gdp Data For The South Pacific Island Nations," The Singapore Economic Review (SER), World Scientific Publishing Co. Pte. Ltd., vol. 56(01), pages 97-112.
    20. Cecilia Frale, Serena Teobaldo, Marco Cacciotti, Alessandra Caretta, 2013. "A Quarterly Measure Of Potential Output In The New European Fiscal Framework," RIEDS - Rivista Italiana di Economia, Demografia e Statistica - The Italian Journal of Economic, Demographic and Statistical Studies, SIEDS Societa' Italiana di Economia Demografia e Statistica, vol. 67(2), pages 181-197, April-Jun.

    More about this item

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ect:emjrnl:v:9:y:2006:i:3:p:357-372. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley-Blackwell Digital Licensing or Christopher F. Baum (email available below). General contact details of provider: https://edirc.repec.org/data/resssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.