IDEAS home Printed from https://ideas.repec.org/a/eee/ecmode/v29y2012i2p283-290.html
   My bibliography  Save this article

Measuring business cycles: A temporal disaggregation model with regime switching

Author

Listed:
  • Huang, Yu-Lieh

Abstract

In this paper, we propose a temporal disaggregation model with regime switches to disaggregate U.S. quarterly GDP into monthly figures. Alternative to the existing literature, our model is able to capture the nonlinear behaviors of both aggregated and disaggregated output series as well as the asymmetric nature of business cycle phases. To demonstrate the applicability of the proposed model, we apply the model with a Markov trend component to U.S. quarterly real GDP. The results suggest that the combination of a temporal disaggregation model with Markov switches leads to a successful representation of the data relative to the existing literature. Also, the inferred probabilities of unobserved states are clearly in close agreement with the NBER reference cycle on a monthly basis, which highlights the importance of nonlinearities in business cycle.

Suggested Citation

  • Huang, Yu-Lieh, 2012. "Measuring business cycles: A temporal disaggregation model with regime switching," Economic Modelling, Elsevier, vol. 29(2), pages 283-290.
  • Handle: RePEc:eee:ecmode:v:29:y:2012:i:2:p:283-290
    DOI: 10.1016/j.econmod.2011.10.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0264999311002446
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Litterman, Robert B, 1983. "A Random Walk, Markov Model for the Distribution of Time Series," Journal of Business & Economic Statistics, American Statistical Association, vol. 1(2), pages 169-173, April.
    2. Jin Seo Cho & Halbert White, 2007. "Testing for Regime Switching," Econometrica, Econometric Society, vol. 75(6), pages 1671-1720, November.
    3. Hamilton, James D., 1996. "This is what happened to the oil price-macroeconomy relationship," Journal of Monetary Economics, Elsevier, vol. 38(2), pages 215-220, October.
    4. Hansen, Bruce E, 1992. "The Likelihood Ratio Test under Nonstandard Conditions: Testing the Markov Switching Model of GNP," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 7(S), pages 61-82, Suppl. De.
    5. Hamilton, James D & Herrera, Ana Maria, 2004. "Oil Shocks and Aggregate Macroeconomic Behavior: The Role of Monetary Policy: Comment," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 36(2), pages 265-286, April.
    6. Marcelle Chauvet & Jeremy M. Piger, 2003. "Identifying business cycle turning points in real time," Review, Federal Reserve Bank of St. Louis, issue Mar, pages 47-61.
    7. Santos Silva, J. M. C. & Cardoso, F. N., 2001. "The Chow-Lin method using dynamic models," Economic Modelling, Elsevier, vol. 18(2), pages 269-280, April.
    8. Bernanke, Ben S & Gertler, Mark & Watson, Mark W, 2004. "Oil Shocks and Aggregate Macroeconomic Behavior: The Role of Monetary Policy: Reply," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 36(2), pages 287-291, April.
    9. Emanuel Mönch & Harald Uhlig, 2005. "Towards a Monthly Business Cycle Chronology for the Euro Area," Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2005(1), pages 43-69.
    10. Silvestro Di Sanzo, 2009. "Testing for linearity in Markov switching models: a bootstrap approach," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 18(2), pages 153-168, July.
    11. Andrew Harvey & Chia-Hui Chung, 2000. "Estimating the underlying change in unemployment in the UK," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 163(3), pages 303-309.
    12. Ben S. Bernanke & Mark Gertler & Mark Watson, 1997. "Systematic Monetary Policy and the Effects of Oil Price Shocks," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 28(1), pages 91-157.
    13. Kuan, Chung-Ming & Huang, Yu-Lieh & Tsay, Ruey S., 2005. "An Unobserved-Component Model With Switching Permanent and Transitory Innovations," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 443-454, October.
    14. Beaudry, Paul & Koop, Gary, 1993. "Do recessions permanently change output?," Journal of Monetary Economics, Elsevier, vol. 31(2), pages 149-163, April.
    15. Sichel, Daniel E, 1993. "Business Cycle Asymmetry: A Deeper Look," Economic Inquiry, Western Economic Association International, vol. 31(2), pages 224-236, April.
    16. Marcellino, Massimiliano, 1999. "Some Consequences of Temporal Aggregation in Empirical Analysis," Journal of Business & Economic Statistics, American Statistical Association, vol. 17(1), pages 129-136, January.
    17. Engel, Charles & Hamilton, James D, 1990. "Long Swings in the Dollar: Are They in the Data and Do Markets Know It?," American Economic Review, American Economic Association, vol. 80(4), pages 689-713, September.
    18. Litterman, Robert B, 1983. "A Random Walk, Markov Model for the Distribution of Time Series," Journal of Business & Economic Statistics, American Statistical Association, vol. 1(2), pages 169-173, April.
    19. Tommaso Proietti, 2006. "Temporal disaggregation by state space methods: Dynamic regression methods revisited," Econometrics Journal, Royal Economic Society, vol. 9(3), pages 357-372, November.
    20. Milton Friedman, 1962. "Introduction to "The Interpolation of Time Series by Related Series"," NBER Chapters,in: The Interpolation of Time Series by Related Series, pages 1-3 National Bureau of Economic Research, Inc.
    21. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    22. Emanuel Mönch & Harald Uhlig, 2003. "Towards a Monthly Business Cycle Chronology for the Euro Area," SFB 649 Discussion Papers SFB649DP2005-023, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany, revised Apr 2005.
    23. Garcia, Rene, 1998. "Asymptotic Null Distribution of the Likelihood Ratio Test in Markov Switching Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(3), pages 763-788, August.
    24. Kim, Chang-Jin, 1994. "Dynamic linear models with Markov-switching," Journal of Econometrics, Elsevier, vol. 60(1-2), pages 1-22.
    25. James H. Stock & Mark W. Watson, 2010. "Indicators for Dating Business Cycles: Cross-History Selection and Comparisons," American Economic Review, American Economic Association, vol. 100(2), pages 16-19, May.
    26. Friedman, Milton, 1993. "The "Plucking Model" of Business Fluctuations Revisited," Economic Inquiry, Western Economic Association International, vol. 31(2), pages 171-177, April.
    27. Herrera, Ana María & Pesavento, Elena, 2009. "Oil Price Shocks, Systematic Monetary Policy, And The “Great Moderation”," Macroeconomic Dynamics, Cambridge University Press, vol. 13(01), pages 107-137, February.
    28. Milton Friedman, 1962. "The Interpolation of Time Series by Related Series," NBER Books, National Bureau of Economic Research, Inc, number frie62-1, January.
    29. Chang-Jin Kim & Charles R. Nelson, 1999. "State-Space Models with Regime Switching: Classical and Gibbs-Sampling Approaches with Applications," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262112388, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Funashima, Yoshito, 2016. "Governmentally amplified output volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 469-478.

    More about this item

    Keywords

    Business cycle asymmetries; Markov trend; Regime-switching model; Temporal disaggregation;

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • E31 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Price Level; Inflation; Deflation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecmode:v:29:y:2012:i:2:p:283-290. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/inca/30411 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.