IDEAS home Printed from https://ideas.repec.org/a/bpj/jtsmet/v10y2018i1p17n2.html
   My bibliography  Save this article

The Chow-Lin method extended to dynamic models with autocorrelated residuals

Author

Listed:
  • Poissonnier Aurélien

    (Insee, Dese, Timbre G220 15 bd Gabriel Péri BP. 100, Malakoff, Cedex 92244, France)

Abstract

I provide a closed-form solution to temporal disaggregation or interpolation models which is both general in terms of dynamic structure of the model (lags of the high-frequency variable) and flexible in terms of autocorrelation of its residual. As for static models, I show that assuming autocorrelated residuals in dynamic models is practically convenient. To illustrate the potential of the solution proposed, I provide an example for quarterly non-financial corporations’ capital stock in computers and communication equipment.

Suggested Citation

  • Poissonnier Aurélien, 2018. "The Chow-Lin method extended to dynamic models with autocorrelated residuals," Journal of Time Series Econometrics, De Gruyter, vol. 10(1), pages 1-17, January.
  • Handle: RePEc:bpj:jtsmet:v:10:y:2018:i:1:p:17:n:2
    DOI: 10.1515/jtse-2016-0007
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/jtse-2016-0007
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/jtse-2016-0007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Milton Friedman, 1962. "The Interpolation of Time Series by Related Series," NBER Books, National Bureau of Economic Research, Inc, number frie62-1, October.
    2. Chow, Gregory C & Lin, An-loh, 1971. "Best Linear Unbiased Interpolation, Distribution, and Extrapolation of Time Series by Related Series," The Review of Economics and Statistics, MIT Press, vol. 53(4), pages 372-375, November.
    3. Fernandez, Roque B, 1981. "A Methodological Note on the Estimation of Time Series," The Review of Economics and Statistics, MIT Press, vol. 63(3), pages 471-476, August.
    4. Tommaso Proietti, 2006. "Temporal disaggregation by state space methods: Dynamic regression methods revisited," Econometrics Journal, Royal Economic Society, vol. 9(3), pages 357-372, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Yu-Lieh, 2012. "Measuring business cycles: A temporal disaggregation model with regime switching," Economic Modelling, Elsevier, vol. 29(2), pages 283-290.
    2. Enrique M. Quilis, 2018. "Temporal disaggregation of economic time series: The view from the trenches," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 72(4), pages 447-470, November.
    3. Litterman, Robert B, 1983. "A Random Walk, Markov Model for the Distribution of Time Series," Journal of Business & Economic Statistics, American Statistical Association, vol. 1(2), pages 169-173, April.
    4. Jürgen Bierbaumer & Sandra Bilek-Steindl, 2017. "Quarterly National Accounts – Manual for Austria. Description of Applied Methods and Data Sources," WIFO Studies, WIFO, number 60427, August.
    5. Emanuel Mönch & Harald Uhlig, 2005. "Towards a Monthly Business Cycle Chronology for the Euro Area," Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2005(1), pages 43-69.
    6. Raffaella Basile & Bruno Chiarini & Elisabetta Marzano, 2011. "Can we Rely upon Fiscal Policy Estimates in Countries with Unreported Production of 15 Per Cent (or more) of GDP?," CESifo Working Paper Series 3521, CESifo.
    7. Valter Giacinto & Libero Monteforte & Andrea Filippone & Francesco Montaruli & Tiziano Ropele, 2021. "ITER: A Quarterly Indicator of Regional Economic Activity in Italy," Italian Economic Journal: A Continuation of Rivista Italiana degli Economisti and Giornale degli Economisti, Springer;Società Italiana degli Economisti (Italian Economic Association), vol. 7(1), pages 129-147, March.
    8. Jonathan Eaton & Samuel Kortum & Brent Neiman & John Romalis, 2016. "Trade and the Global Recession," American Economic Review, American Economic Association, vol. 106(11), pages 3401-3438, November.
    9. Ledenyov, Dimitri O. & Ledenyov, Viktor O., 2013. "On the Stratonovich – Kalman - Bucy filtering algorithm application for accurate characterization of financial time series with use of state-space model by central banks," MPRA Paper 50235, University Library of Munich, Germany.
    10. Marcellino, Massimiliano & Proietti, Tommaso & Frale, Cecilia & Mazzi, Gian Luigi, 2008. "A Monthly Indicator of the Euro Area GDP," CEPR Discussion Papers 7007, C.E.P.R. Discussion Papers.
    11. Imad A. Moosa & Kelly Burns, 2013. "Interpolating flow and stock variables in a continuous-time dynamic framework," Applied Economics Letters, Taylor & Francis Journals, vol. 20(7), pages 621-625, May.
    12. Cuevas Rumín, Ángel & Quilis, Enrique M. & Espasa, Antoni, 2011. "Combining benchmarking and chain-linking for short-term regional forecasting," DES - Working Papers. Statistics and Econometrics. WS ws114130, Universidad Carlos III de Madrid. Departamento de Estadística.
    13. Klaus Abberger & Michael Graff & Oliver Müller & Boriss Siliverstovs, 2023. "Imputing Monthly Values for Quarterly Time Series: An Application Performed with Swiss Business Cycle Data," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 19(3), pages 241-273, November.
    14. Marcus Scheiblecker & Sandra Bilek-Steindl & Michael Wüger, 2007. "Quarterly National Accounts Inventory of Austria. Description of Applied Methods and Data Sources," WIFO Studies, WIFO, number 37249, August.
    15. John McDermott & Viv B. Hall, "undated". "A quarterly Post-World War II Real GDP Series for New Zealand," Reserve Bank of New Zealand Discussion Paper Series DP2009/12, Reserve Bank of New Zealand.
    16. Abdullah Tahir & Jameel Ahmed & Waqas Ahmed, 2018. "Robust Quarterization of GDP and Determination of Business Cycle Dates for IGC Partner Countries," SBP Working Paper Series 97, State Bank of Pakistan, Research Department.
    17. repec:hum:wpaper:sfb649dp2005-023 is not listed on IDEAS
    18. José Casals & Miguel Jerez & Sonia Sotoca, 2009. "Modelling and forecasting time series sampled at different frequencies," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(4), pages 316-342.
    19. Chiara Perricone, 2018. "Wavelet analysis for temporal disaggregation," CEIS Research Paper 444, Tor Vergata University, CEIS, revised 29 Oct 2018.
    20. Cuevas Ángel & Quilis Enrique M. & Espasa Antoni, 2015. "Quarterly Regional GDP Flash Estimates by Means of Benchmarking and Chain Linking," Journal of Official Statistics, Sciendo, vol. 31(4), pages 627-647, December.
    21. Tommaso Proietti, 2011. "Multivariate temporal disaggregation with cross-sectional constraints," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(7), pages 1455-1466, June.

    More about this item

    Keywords

    time series; temporal disaggregation; interpolation; Chow-Lin; Denton; quarterly national accounts;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C82 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Methodology for Collecting, Estimating, and Organizing Macroeconomic Data; Data Access

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:jtsmet:v:10:y:2018:i:1:p:17:n:2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.