IDEAS home Printed from https://ideas.repec.org/a/taf/apeclt/v20y2013i7p621-625.html
   My bibliography  Save this article

Interpolating flow and stock variables in a continuous-time dynamic framework

Author

Listed:
  • Imad A. Moosa
  • Kelly Burns

Abstract

A continuous-time dynamic interpolation method for deriving high-frequency data is illustrated by deriving monthly data from quarterly data on two US macroeconomic variables: industrial production as a flow variable and the money supply as a stock variable. Analysis of the actual and interpolated series shows that they do not differ significantly in terms of the basic statistics and that they are cointegrated with a cointegarting vector of (--1,0,1). Unlike other interpolation methods, this method distinguishes between stock and flow variables.

Suggested Citation

  • Imad A. Moosa & Kelly Burns, 2013. "Interpolating flow and stock variables in a continuous-time dynamic framework," Applied Economics Letters, Taylor & Francis Journals, vol. 20(7), pages 621-625, May.
  • Handle: RePEc:taf:apeclt:v:20:y:2013:i:7:p:621-625
    DOI: 10.1080/13504851.2012.727969
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/13504851.2012.727969
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/13504851.2012.727969?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter C. B. Phillips & Bruce E. Hansen, 1990. "Statistical Inference in Instrumental Variables Regression with I(1) Processes," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 57(1), pages 99-125.
    2. Milton Friedman, 1962. "Introduction to "The Interpolation of Time Series by Related Series"," NBER Chapters, in: The Interpolation of Time Series by Related Series, pages 1-3, National Bureau of Economic Research, Inc.
    3. Milton Friedman, 1962. "The Interpolation of Time Series by Related Series," NBER Books, National Bureau of Economic Research, Inc, number frie62-1.
    4. Chow, Gregory C & Lin, An-loh, 1971. "Best Linear Unbiased Interpolation, Distribution, and Extrapolation of Time Series by Related Series," The Review of Economics and Statistics, MIT Press, vol. 53(4), pages 372-375, November.
    5. Fernandez, Roque B, 1981. "A Methodological Note on the Estimation of Time Series," The Review of Economics and Statistics, MIT Press, vol. 63(3), pages 471-476, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jonathan Eaton & Samuel Kortum & Brent Neiman & John Romalis, 2016. "Trade and the Global Recession," American Economic Review, American Economic Association, vol. 106(11), pages 3401-3438, November.
    2. Bernardí Cabred & Jose Pavía, 1999. "EstimatingJ (>1) quarterly time series in fulfilling annual and quarterly constraints," International Advances in Economic Research, Springer;International Atlantic Economic Society, vol. 5(3), pages 339-349, August.
    3. Wolfgang Polasek & Richard Sellner, 2008. "Spatial Chow-Lin Methods: Bayesian And Ml Forecast Comparisons," Working Paper series 38_08, Rimini Centre for Economic Analysis.
    4. J. Isaac Miller, 2010. "Cointegrating regressions with messy regressors and an application to mixed‐frequency series," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(4), pages 255-277, July.
    5. Huang, Yu-Lieh, 2012. "Measuring business cycles: A temporal disaggregation model with regime switching," Economic Modelling, Elsevier, vol. 29(2), pages 283-290.
    6. Rashid, Abdul & Jehan, Zanaib, 2013. "Derivation of Quarterly GDP, Investment Spending, and Government Expenditure Figures from Annual Data: The Case of Pakistan," MPRA Paper 46937, University Library of Munich, Germany.
    7. Ledenyov, Dimitri O. & Ledenyov, Viktor O., 2013. "On the Stratonovich – Kalman - Bucy filtering algorithm application for accurate characterization of financial time series with use of state-space model by central banks," MPRA Paper 50235, University Library of Munich, Germany.
    8. Jérôme TRINH, 2019. "Temporal disaggregation of short time series with structural breaks: Estimating quarterly data from yearly emerging economies data," Working Papers 2019-11, Center for Research in Economics and Statistics.
    9. Richard Thalheimer & Mukhtar M. Ali, 1995. "The Demand for Parimutuel Horse Race Wagering and Attendance," Management Science, INFORMS, vol. 41(1), pages 129-143, January.
    10. Jérôme TRINH, 2019. "Disaggregating the Chinese annual national accounts to quarterly series," THEMA Working Papers 2019-08, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    11. Ledenyov, Dimitri O. & Ledenyov, Viktor O., 2015. "Wave function method to forecast foreign currencies exchange rates at ultra high frequency electronic trading in foreign currencies exchange markets," MPRA Paper 67470, University Library of Munich, Germany.
    12. Enrique M. Quilis, 2018. "Temporal disaggregation of economic time series: The view from the trenches," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 72(4), pages 447-470, November.
    13. Barnett, William A. & Su, Liting, 2017. "Data sources for the credit-card augmented Divisia monetary aggregates," Research in International Business and Finance, Elsevier, vol. 39(PB), pages 899-910.
    14. Litterman, Robert B, 1983. "A Random Walk, Markov Model for the Distribution of Time Series," Journal of Business & Economic Statistics, American Statistical Association, vol. 1(2), pages 169-173, April.
    15. Peter Fuleky & Carl S. Bonham, 2013. "Forecasting with Mixed Frequency Samples: The Case of Common Trends," Working Papers 201305, University of Hawaii at Manoa, Department of Economics.
    16. T. M. Fullerton & A. G. Walke, 2013. "Public transportation demand in a border metropolitan economy," Applied Economics, Taylor & Francis Journals, vol. 45(27), pages 3922-3931, September.
    17. Fullerton, Thomas M. Jr & Walke, Adam G., 2012. "Border Zone Mass Transit Demand in Brownsville and Laredo," Journal of the Transportation Research Forum, Transportation Research Forum, vol. 51(2).
    18. Peter Fuleky & Carl Bonham, 2010. "Forecasting Based on Common Trends in Mixed Frequency Samples," Working Papers 2010-17R1, University of Hawaii Economic Research Organization, University of Hawaii at Manoa, revised Jul 2013.
    19. J. Isaac Miller, 2007. "Cointegrating Regressions with Messy Regressors: Missingness, Mixed Frequency, and Measurement Error," Working Papers 0722, Department of Economics, University of Missouri, revised 15 Apr 2009.
    20. Abdullah Tahir & Jameel Ahmed & Waqas Ahmed, 2018. "Robust Quarterization of GDP and Determination of Business Cycle Dates for IGC Partner Countries," SBP Working Paper Series 97, State Bank of Pakistan, Research Department.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:apeclt:v:20:y:2013:i:7:p:621-625. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RAEL20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.