IDEAS home Printed from https://ideas.repec.org/a/taf/jnlbes/v30y2011i1p1-17.html
   My bibliography  Save this article

Forecast Rationality Tests Based on Multi-Horizon Bounds

Author

Listed:
  • Andrew J. Patton
  • Allan Timmermann

Abstract

Forecast rationality under squared error loss implies various bounds on second moments of the data across forecast horizons. For example, the mean squared forecast error should be increasing in the horizon, and the mean squared forecast should be decreasing in the horizon. We propose rationality tests based on these restrictions, including new ones that can be conducted without data on the target variable, and implement them via tests of inequality constraints in a regression framework. A new test of optimal forecast revision based on a regression of the target variable on the long-horizon forecast and the sequence of interim forecast revisions is also proposed. The size and power of the new tests are compared with those of extant tests through Monte Carlo simulations. An empirical application to the Federal Reserve's Greenbook forecasts is presented.

Suggested Citation

  • Andrew J. Patton & Allan Timmermann, 2011. "Forecast Rationality Tests Based on Multi-Horizon Bounds," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(1), pages 1-17, June.
  • Handle: RePEc:taf:jnlbes:v:30:y:2011:i:1:p:1-17
    DOI: 10.1080/07350015.2012.634337
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/07350015.2012.634337
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Pesaran, M. Hashem & Weale, Martin, 2006. "Survey Expectations," Handbook of Economic Forecasting, Elsevier.
    2. Croushore, Dean & Stark, Tom, 2001. "A real-time data set for macroeconomists," Journal of Econometrics, Elsevier, vol. 105(1), pages 111-130, November.
    3. West, Kenneth D, 1996. "Asymptotic Inference about Predictive Ability," Econometrica, Econometric Society, vol. 64(5), pages 1067-1084, September.
    4. Hansen, Peter Reinhard, 2005. "A Test for Superior Predictive Ability," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 365-380, October.
    5. Marcellino, Massimiliano & Stock, James H. & Watson, Mark W., 2006. "A comparison of direct and iterated multistep AR methods for forecasting macroeconomic time series," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 499-526.
    6. Kajal Lahiri & Gultekin Isiklar & Prakash Loungani, 2006. "How quickly do forecasters incorporate news? Evidence from cross-country surveys," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(6), pages 703-725.
    7. Graham Elliott & Allan Timmermann & Ivana Komunjer, 2005. "Estimation and Testing of Forecast Rationality under Flexible Loss," Review of Economic Studies, Oxford University Press, vol. 72(4), pages 1107-1125.
    8. Clive W.J. Granger, 1999. "Outline of forecast theory using generalized cost functions," Spanish Economic Review, Springer;Spanish Economic Association, vol. 1(2), pages 161-173.
    9. Jon Faust & Jonathan H. Wright, 2007. "Comparing Greenbook and Reduced Form Forecasts using a Large Realtime Dataset," NBER Working Papers 13397, National Bureau of Economic Research, Inc.
    10. Davies, Anthony & Lahiri, Kajal, 1995. "A new framework for analyzing survey forecasts using three-dimensional panel data," Journal of Econometrics, Elsevier, vol. 68(1), pages 205-227, July.
    11. West, Kenneth D & McCracken, Michael W, 1998. "Regression-Based Tests of Predictive Ability," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 817-840, November.
    12. Wooldridge, Jeffrey M. & White, Halbert, 1988. "Some Invariance Principles and Central Limit Theorems for Dependent Heterogeneous Processes," Econometric Theory, Cambridge University Press, vol. 4(02), pages 210-230, August.
    13. Clements,Michael & Hendry,David, 1998. "Forecasting Economic Time Series," Cambridge Books, Cambridge University Press, number 9780521632423, May.
    14. Patton, Andrew J. & Timmermann, Allan, 2007. "Testing Forecast Optimality Under Unknown Loss," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1172-1184, December.
    15. Faust, Jon & Wright, Jonathan H., 2009. "Comparing Greenbook and Reduced Form Forecasts Using a Large Realtime Dataset," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 468-479.
    16. Wolak, Frank A., 1989. "Testing inequality constraints in linear econometric models," Journal of Econometrics, Elsevier, vol. 41(2), pages 205-235, June.
    17. Corradi, Valentina & Fernandez, Andres & Swanson, Norman R., 2009. "Information in the Revision Process of Real-Time Datasets," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 455-467.
    18. Patton, Andrew J. & Timmermann, Allan, 2007. "Properties of optimal forecasts under asymmetric loss and nonlinearity," Journal of Econometrics, Elsevier, vol. 140(2), pages 884-918, October.
    19. Moon, Hyungsik Roger & Schorfheide, Frank, 2009. "Estimation with overidentifying inequality moment conditions," Journal of Econometrics, Elsevier, vol. 153(2), pages 136-154, December.
    20. Patton, Andrew J., 2011. "Volatility forecast comparison using imperfect volatility proxies," Journal of Econometrics, Elsevier, vol. 160(1), pages 246-256, January.
    21. Carlos Capistrán, 2007. "Optimality Tests for Multi-Horizon Forecasts," Working Papers 2007-14, Banco de México.
    22. Faust, Jon & Wright, Jonathan H., 2008. "Efficient forecast tests for conditional policy forecasts," Journal of Econometrics, Elsevier, vol. 146(2), pages 293-303, October.
    23. Schmidt, Peter, 1974. "The Asymptotic Distribution of Forecasts in the Dynamic Simulation of an Econometric Model," Econometrica, Econometric Society, vol. 42(2), pages 303-309, March.
    24. Francis X. Diebold & Glenn D. Rudebusch, 1989. "Forecasting output with the composite leading index: an ex ante analysis," Finance and Economics Discussion Series 90, Board of Governors of the Federal Reserve System (U.S.).
    25. Halbert White, 2000. "A Reality Check for Data Snooping," Econometrica, Econometric Society, vol. 68(5), pages 1097-1126, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bańbura, Marta & Giannone, Domenico & Modugno, Michele & Reichlin, Lucrezia, 2013. "Now-Casting and the Real-Time Data Flow," Handbook of Economic Forecasting, Elsevier.
    2. Thomas Jobert & Lionel Persyn, 2012. "Quelques constats sur les prévisions conjoncturelles de la croissance française," Revue d'économie politique, Dalloz, vol. 122(6), pages 833-849.
    3. Roberto Casarin, 2014. "A Note on Tractable State-Space Model for Symmetric Positive-Definite Matrices," Working Papers 2014:23, Department of Economics, University of Venice "Ca' Foscari".
    4. Lennart F. Hoogerheide & Francesco Ravazzolo & Herman K. van Dijk, 2011. "Backtesting Value-at-Risk using Forecasts for Multiple Horizons, a Comment on the Forecast Rationality Tests of A.J. Patton and A. Timmermann," Tinbergen Institute Discussion Papers 11-131/4, Tinbergen Institute.
    5. Charles Rahal, 2015. "Housing Market Forecasting with Factor Combinations," Discussion Papers 15-05r, Department of Economics, University of Birmingham.

    More about this item

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlbes:v:30:y:2011:i:1:p:1-17. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: http://www.tandfonline.com/UBES20 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.