IDEAS home Printed from https://ideas.repec.org/p/aah/create/2008-54.html
   My bibliography  Save this paper

The Resolution of Macroeconomic Uncertainty: Evidence from Survey Forecast

Author

Listed:
  • Andrew J. Patton
  • Allan Timmermann

    (School of Economics and Management, University of Aarhus, Denmark and CREATES)

Abstract

We develop an unobserved components approach to study surveys of forecasts containing multiple forecast horizons. Under the assumption that forecasters optimally update their beliefs about past, current and future state variables as new information arrives, we use our model to extract information on the degree of predictability of the state variable and the importance of measurement errors on that variable. Empirical estimates of the model are obtained using survey forecasts of annual GDP growth and inflation in the US with forecast horizons ranging from 1 to 24 months. The model is found to closely match the joint realization of forecast errors at different horizons and is used to demonstrate how uncertainty about macroeconomic variables is resolved.

Suggested Citation

  • Andrew J. Patton & Allan Timmermann, 2008. "The Resolution of Macroeconomic Uncertainty: Evidence from Survey Forecast," CREATES Research Papers 2008-54, Department of Economics and Business Economics, Aarhus University.
  • Handle: RePEc:aah:create:2008-54
    as

    Download full text from publisher

    File URL: ftp://ftp.econ.au.dk/creates/rp/08/rp08_54.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ramey, Garey & Ramey, Valerie A, 1995. "Cross-Country Evidence on the Link between Volatility and Growth," American Economic Review, American Economic Association, vol. 85(5), pages 1138-1151, December.
    2. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    3. Granger, C. W. J. & Newbold, Paul, 1986. "Forecasting Economic Time Series," Elsevier Monographs, Elsevier, edition 2, number 9780122951831 edited by Shell, Karl.
    4. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    5. David H. Romer & Christina D. Romer, 2000. "Federal Reserve Information and the Behavior of Interest Rates," American Economic Review, American Economic Association, vol. 90(3), pages 429-457, June.
    6. Stock, James H. & Watson, Mark W., 2006. "Forecasting with Many Predictors," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 10, pages 515-554, Elsevier.
    7. Davies, Anthony & Lahiri, Kajal, 1995. "A new framework for analyzing survey forecasts using three-dimensional panel data," Journal of Econometrics, Elsevier, vol. 68(1), pages 205-227, July.
    8. Croushore, Dean, 2006. "Forecasting with Real-Time Macroeconomic Data," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 17, pages 961-982, Elsevier.
    9. Croushore, Dean & Stark, Tom, 2001. "A real-time data set for macroeconomists," Journal of Econometrics, Elsevier, vol. 105(1), pages 111-130, November.
    10. Clements, Michael P., 1996. "Evaluating the rationality of fixed-event forecasts," Economic Research Papers 268705, University of Warwick - Department of Economics.
    11. Lavan Mahadeva & Alex Muscatelli, 2005. "National Accounts Revisions and Output Gap Estimates in a Model of Monetary Policy with Data Uncertainty," Discussion Papers 14, Monetary Policy Committee Unit, Bank of England.
    12. Garrat, A. & Lee, K. & Pesaran, M.H. & Shin, Y., 2000. "Forecast Uncertainties in Macroeconometric Modelling: An Application to the UK Economy," Cambridge Working Papers in Economics 0004, Faculty of Economics, University of Cambridge.
    13. Patton, Andrew J. & Timmermann, Allan, 2007. "Testing Forecast Optimality Under Unknown Loss," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1172-1184, December.
    14. Patton, Andrew J. & Timmermann, Allan, 2010. "Why do forecasters disagree? Lessons from the term structure of cross-sectional dispersion," Journal of Monetary Economics, Elsevier, vol. 57(7), pages 803-820, October.
    15. Francis X. Diebold & Glenn D. Rudebusch, 1989. "Forecasting output with the composite leading index: an ex ante analysis," Finance and Economics Discussion Series 90, Board of Governors of the Federal Reserve System (U.S.).
    16. Nordhaus, William D, 1987. "Forecasting Efficiency: Concepts and Applications," The Review of Economics and Statistics, MIT Press, vol. 69(4), pages 667-674, November.
    17. Swidler, Steve & Ketcher, David, 1990. "Economic Forecasts, Rationality, and the Processing of New Information over Time," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 22(1), pages 65-76, February.
    18. Gultekin Isiklar & Kajal Lahiri & Prakash Loungani, 2006. "How quickly do forecasters incorporate news? Evidence from cross‐country surveys," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(6), pages 703-725, September.
    19. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
    20. Kydland, Finn E & Prescott, Edward C, 1982. "Time to Build and Aggregate Fluctuations," Econometrica, Econometric Society, vol. 50(6), pages 1345-1370, November.
    21. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-162, April.
    22. Tauchen, George, 1986. "Statistical Properties of Generalized Method-of-Moments Estimators of Structural Parameters Obtained from Financial Market Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 4(4), pages 397-416, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pfajfar, D. & Zakelj, B., 2012. "Uncertainty and Disagreement in Forecasting Inflation : Evidence from the Laboratory (Revised version of EBC DP 2011-014)," Other publications TiSEM 2b92a09f-918e-4614-978d-0, Tilburg University, School of Economics and Management.
    2. Jonas Dovern & Ulrich Fritsche & Jiri Slacalek, 2012. "Disagreement Among Forecasters in G7 Countries," The Review of Economics and Statistics, MIT Press, vol. 94(4), pages 1081-1096, November.
    3. Pfajfar, D. & Zakelj, B., 2012. "Uncertainty and Disagreement in Forecasting Inflation : Evidence from the Laboratory (Revised version of CentER DP 2011-053)," Other publications TiSEM 38fac5ce-fe8f-4b61-a679-f, Tilburg University, School of Economics and Management.
    4. Fernandes, Marcelo & Thiele, Eduardo, 2015. "The Macroeconomic Determinants of the Term Structure of Inflation Expectations in Brazil," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 35(1), October.
    5. Ohnsorge,Franziska Lieselotte & Stocker,Marc & Some,Modeste Y., 2016. "Quantifying uncertainties in global growth forecasts," Policy Research Working Paper Series 7770, The World Bank.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Patton, Andrew J & Timmermann, Allan G, 2007. "Learning in Real Time: Theory and Empirical Evidence from the Term Structure of Survey Forecasts," CEPR Discussion Papers 6526, C.E.P.R. Discussion Papers.
    2. Andrew J. Patton & Allan Timmermann, 2011. "Forecast Rationality Tests Based on Multi-Horizon Bounds," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(1), pages 1-17, June.
    3. Wang, Yiyao & Lee, Tae-Hwy, 2014. "Asymmetric loss in the Greenbook and the Survey of Professional Forecasters," International Journal of Forecasting, Elsevier, vol. 30(2), pages 235-245.
    4. Heij, Christiaan & van Dijk, Dick & Groenen, Patrick J.F., 2011. "Real-time macroeconomic forecasting with leading indicators: An empirical comparison," International Journal of Forecasting, Elsevier, vol. 27(2), pages 466-481.
    5. Issler, João Victor & Lima, Luiz Renato, 2009. "A panel data approach to economic forecasting: The bias-corrected average forecast," Journal of Econometrics, Elsevier, vol. 152(2), pages 153-164, October.
    6. Fred Joutz & Michael P. Clements & Herman O. Stekler, 2007. "An evaluation of the forecasts of the federal reserve: a pooled approach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(1), pages 121-136.
    7. Patton, Andrew J. & Timmermann, Allan, 2010. "Why do forecasters disagree? Lessons from the term structure of cross-sectional dispersion," Journal of Monetary Economics, Elsevier, vol. 57(7), pages 803-820, October.
    8. Clements, Michael P., 2010. "Explanations of the inconsistencies in survey respondents' forecasts," European Economic Review, Elsevier, vol. 54(4), pages 536-549, May.
    9. Capistrán, Carlos, 2008. "Bias in Federal Reserve inflation forecasts: Is the Federal Reserve irrational or just cautious?," Journal of Monetary Economics, Elsevier, vol. 55(8), pages 1415-1427, November.
    10. Golinelli, Roberto & Parigi, Giuseppe, 2014. "Tracking world trade and GDP in real time," International Journal of Forecasting, Elsevier, vol. 30(4), pages 847-862.
    11. Sheng, Xuguang (Simon), 2015. "Evaluating the economic forecasts of FOMC members," International Journal of Forecasting, Elsevier, vol. 31(1), pages 165-175.
    12. Issler, João Victor & Rodrigues, Claudia & Burjack, Rafael, 2014. "Using common features to understand the behavior of metal-commodity prices and forecast them at different horizons," Journal of International Money and Finance, Elsevier, vol. 42(C), pages 310-335.
    13. Capistrán, Carlos & López-Moctezuma, Gabriel, 2014. "Forecast revisions of Mexican inflation and GDP growth," International Journal of Forecasting, Elsevier, vol. 30(2), pages 177-191.
    14. Graham Elliott & Ivana Komunjer & Allan Timmermann, 2008. "Biases in Macroeconomic Forecasts: Irrationality or Asymmetric Loss?," Journal of the European Economic Association, MIT Press, vol. 6(1), pages 122-157, March.
    15. repec:fgv:epgewp:736 is not listed on IDEAS
    16. Knut Are Aastveit & Karsten R. Gerdrup & Anne Sofie Jore & Leif Anders Thorsrud, 2014. "Nowcasting GDP in Real Time: A Density Combination Approach," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(1), pages 48-68, January.
    17. Sinclair, Tara M., 2019. "Characteristics and implications of Chinese macroeconomic data revisions," International Journal of Forecasting, Elsevier, vol. 35(3), pages 1108-1117.
    18. Anthony Garratt & Shaun P Vahey, 2006. "UK Real-Time Macro Data Characteristics," Economic Journal, Royal Economic Society, vol. 116(509), pages 119-135, February.
    19. Fabian Krüger & Todd E. Clark & Francesco Ravazzolo, 2017. "Using Entropic Tilting to Combine BVAR Forecasts With External Nowcasts," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(3), pages 470-485, July.
    20. Rossi, Barbara, 2013. "Advances in Forecasting under Instability," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1203-1324, Elsevier.
    21. Mont'Alverne Duarte, Angelo & Gaglianone, Wagner Piazza & de Carvalho Guillén, Osmani Teixeira & Issler, João Victor, 2021. "Commodity prices and global economic activity: A derived-demand approach," Energy Economics, Elsevier, vol. 96(C).

    More about this item

    Keywords

    Fixed-event forecasts; multiple forecast horizons; Kalman filtering; survey data;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aah:create:2008-54. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.econ.au.dk/afn/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (email available below). General contact details of provider: http://www.econ.au.dk/afn/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.