IDEAS home Printed from https://ideas.repec.org/p/jrs/wpaper/202004.html
   My bibliography  Save this paper

Googling Unemployment During the Pandemic: Inference and Nowcast Using Search Data

Author

Listed:

Abstract

The economic crisis caused by the covid-19 pandemic is unprecedented in recent history. We contribute to a growing literature investigating the economic consequences of covid-19 by showing how unemployment-related online searches across the EU27 reacted to the introduction of lock-downs. We exploit Google Trends topics to retrieve over two thousand search queries related to unemployment in 27 countries. We nowcast the monthly unemployment rate in the EU Member States to assess the relationship between search data and the underlying phenomenon as well as to identify the keywords that improve predictive accuracy. Drawing from this finding, we use the set of best predictors in a Difference-in-Differences framework to document a surge of unemploymentrelated searches in the wake of lock-downs of about 30%. This effect persists for more than five weeks. We suggest that the effect is most likely due to an increase in unemployment expectations.

Suggested Citation

  • Caperna, Giulio & Colagrossi, Marco & Geraci, Andrea & Mazzarella, Gianluca, 2020. "Googling Unemployment During the Pandemic: Inference and Nowcast Using Search Data," Working Papers 2020-04, Joint Research Centre, European Commission.
  • Handle: RePEc:jrs:wpaper:202004
    as

    Download full text from publisher

    File URL: https://publications.jrc.ec.europa.eu/repository/bitstream/JRC121050/jrc121050_gc_mc_ag_gm_2020_covid_unemployment.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kursa, Miron B. & Rudnicki, Witold R., 2010. "Feature Selection with the Boruta Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 36(i11).
    2. Forsythe, Eliza & Kahn, Lisa B. & Lange, Fabian & Wiczer, David, 2020. "Labor demand in the time of COVID-19: Evidence from vacancy postings and UI claims," Journal of Public Economics, Elsevier, vol. 189(C).
    3. Fondeur, Y. & Karamé, F., 2013. "Can Google data help predict French youth unemployment?," Economic Modelling, Elsevier, vol. 30(C), pages 117-125.
    4. Hamid, Alain & Heiden, Moritz, 2015. "Forecasting volatility with empirical similarity and Google Trends," Journal of Economic Behavior & Organization, Elsevier, vol. 117(C), pages 62-81.
    5. Ayşegül Şahin & Murat Tasci, 2020. "The Unemployment Cost of COVID-19: How High and How Long?," Economic Commentary, Federal Reserve Bank of Cleveland, vol. 2020(09), May.
    6. Stephens-Davidowitz, Seth, 2014. "The cost of racial animus on a black candidate: Evidence using Google search data," Journal of Public Economics, Elsevier, vol. 118(C), pages 26-40.
    7. Adams-Prassl, Abi & Boneva, Teodora & Golin, Marta & Rauh, Christopher, 2020. "Inequality in the impact of the coronavirus shock: Evidence from real time surveys," Journal of Public Economics, Elsevier, vol. 189(C).
    8. Titan Alon & Matthias Doepke & Jane Olmstead-Rumsey & Michèle Tertilt, 2020. "The Impact of COVID-19 on Gender Equality," NBER Working Papers 26947, National Bureau of Economic Research, Inc.
    9. Scott R. Baker & Andrey Fradkin, 2017. "The Impact of Unemployment Insurance on Job Search: Evidence from Google Search Data," The Review of Economics and Statistics, MIT Press, vol. 99(5), pages 756-768, December.
    10. Alexis Akira Toda, 2020. "Susceptible-Infected-Recovered (SIR) Dynamics of COVID-19 and Economic Impact," Papers 2003.11221, arXiv.org, revised Mar 2020.
    11. D’Amuri, Francesco & Marcucci, Juri, 2017. "The predictive power of Google searches in forecasting US unemployment," International Journal of Forecasting, Elsevier, vol. 33(4), pages 801-816.
    12. Götz, Thomas B. & Knetsch, Thomas A., 2019. "Google data in bridge equation models for German GDP," International Journal of Forecasting, Elsevier, vol. 35(1), pages 45-66.
    13. Gary Koop & Luca Onorante, 2019. "Macroeconomic Nowcasting Using Google Probabilities☆," Advances in Econometrics, in: Topics in Identification, Limited Dependent Variables, Partial Observability, Experimentation, and Flexible Modeling: Part A, volume 40, pages 17-40, Emerald Group Publishing Limited.
    14. Hamermesh, Daniel S., 2020. "Lockdowns, Loneliness and Life Satisfaction," IZA Discussion Papers 13140, Institute of Labor Economics (IZA).
    15. Stefano Ramelli & Alexander F Wagner, 2020. "Feverish Stock Price Reactions to COVID-19," The Review of Corporate Finance Studies, Society for Financial Studies, vol. 9(3), pages 622-655.
    16. Thiemo Fetzer & Lukas Hensel & Johannes Hermle & Christopher Roth, 2021. "Coronavirus Perceptions and Economic Anxiety," The Review of Economics and Statistics, MIT Press, vol. 103(5), pages 968–978-9, December.
    17. Brodeur, Abel & Clark, Andrew E. & Fleche, Sarah & Powdthavee, Nattavudh, 2021. "COVID-19, lockdowns and well-being: Evidence from Google Trends," Journal of Public Economics, Elsevier, vol. 193(C).
    18. Arnoud Boot & Elena Carletti & Hans-Helmut Kotz & Jan Pieter Krahnen & Loriana Pelizzon & Marti Subrahmanyam, 2020. "Coronavirus and financial stability 3.0: Try equity – risk sharing for companies, large and small," Vox eBook Chapters, in: AgneÌ€s BeÌ nassy-QueÌ reÌ & Beatrice Weder di Mauro (ed.), Europe in the Time of Covid-19, edition 1, volume 1, chapter 1, pages 41-47, Centre for Economic Policy Research.
    19. Adams-Prassl, A. & Boneva, T. & Golin, M & Rauh, C., 2020. "Inequality in the Impact of the Coronavirus Shock: New Survey Evidence for the US," Cambridge Working Papers in Economics 2022, Faculty of Economics, University of Cambridge.
    20. James H. Stock, 2020. "Data Gaps and the Policy Response to the Novel Coronavirus," NBER Working Papers 26902, National Bureau of Economic Research, Inc.
    21. Zhi Da & Joseph Engelberg & Pengjie Gao, 2015. "Editor's Choice The Sum of All FEARS Investor Sentiment and Asset Prices," The Review of Financial Studies, Society for Financial Studies, vol. 28(1), pages 1-32.
    22. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    23. Marcelo C. Medeiros & Gabriel F. R. Vasconcelos & Álvaro Veiga & Eduardo Zilberman, 2021. "Forecasting Inflation in a Data-Rich Environment: The Benefits of Machine Learning Methods," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(1), pages 98-119, January.
    24. Baert, Stijn & Lippens, Louis & Moens, Eline & Sterkens, Philippe & Weytjens, Johannes, 2020. "How do we think the COVID-19 crisis will affect our careers (if any remain)?," GLO Discussion Paper Series 520, Global Labor Organization (GLO).
    25. Scott R. Baker & Nicholas Bloom & Steven J. Davis & Stephen J. Terry, 2020. "COVID-Induced Economic Uncertainty," NBER Working Papers 26983, National Bureau of Economic Research, Inc.
    26. Aaron Amburgey & Serdar Birinci, 2020. "The Effects of COVID-19 on Unemployment Insurance Claims," Economic Synopses, Federal Reserve Bank of St. Louis, issue 9, March.
    27. Zhi Da & Joseph Engelberg & Pengjie Gao, 2011. "In Search of Attention," Journal of Finance, American Finance Association, vol. 66(5), pages 1461-1499, October.
    28. Simeon Vosen & Torsten Schmidt, 2011. "Forecasting private consumption: survey‐based indicators vs. Google trends," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 30(6), pages 565-578, September.
    29. Hyunyoung Choi & Hal Varian, 2012. "Predicting the Present with Google Trends," The Economic Record, The Economic Society of Australia, vol. 88(s1), pages 2-9, June.
    30. Daniel Aaronson & Scott A. Brave & R. Andrew Butters & Daniel Sacks & Boyoung Seo, 2020. "Using the Eye of the Storm to Predict the Wave of Covid-19 UI Claims," Working Paper Series WP-2020-10, Federal Reserve Bank of Chicago, revised 16 Apr 2020.
    31. Stefano Ramelli & Alexander F Wagner, 0. "Feverish Stock Price Reactions to COVID-19," Review of Corporate Finance Studies, Oxford University Press, vol. 9(3), pages 622-655.
    32. Vlastakis, Nikolaos & Markellos, Raphael N., 2012. "Information demand and stock market volatility," Journal of Banking & Finance, Elsevier, vol. 36(6), pages 1808-1821.
    33. Boot, Arnoud W. A. & Carletti, Elena & Kotz, Hans-Helmut & Krahnen, Jan Pieter & Pelizzon, Loriana & Subrahmanyam, Marti G., 2020. "Corona and financial stability 3.0: Try equity - risk sharing for companies, large and small," SAFE Policy Letters 81, Leibniz Institute for Financial Research SAFE.
    34. Vosen, Simeon & Schmidt, Torsten, 2012. "A monthly consumption indicator for Germany based on Internet search query data," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 19(7), pages 683-687.
    35. Callum Jones & Thomas Philippon & Venky Venkateswaran, 2021. "Optimal Mitigation Policies in a Pandemic: Social Distancing and Working from Home [A simple planning problem for covid-19 lockdown]," The Review of Financial Studies, Society for Financial Studies, vol. 34(11), pages 5188-5223.
    36. Siliverstovs, Boriss & Wochner, Daniel S., 2018. "Google Trends and reality: Do the proportions match?," Journal of Economic Behavior & Organization, Elsevier, vol. 145(C), pages 1-23.
    37. Paul Smith, 2016. "Google's MIDAS Touch: Predicting UK Unemployment with Internet Search Data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 35(3), pages 263-284, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aaronson, Daniel & Brave, Scott A. & Butters, R. Andrew & Fogarty, Michael & Sacks, Daniel W. & Seo, Boyoung, 2022. "Forecasting unemployment insurance claims in realtime with Google Trends," International Journal of Forecasting, Elsevier, vol. 38(2), pages 567-581.
    2. Simionescu, Mihaela & Cifuentes-Faura, Javier, 2022. "Can unemployment forecasts based on Google Trends help government design better policies? An investigation based on Spain and Portugal," Journal of Policy Modeling, Elsevier, vol. 44(1), pages 1-21.
    3. Gamze Bayın Donar & Seda Aydan, 2022. "Association of COVID‐19 with lifestyle behaviours and socio‐economic variables in Turkey: An analysis of Google Trends," International Journal of Health Planning and Management, Wiley Blackwell, vol. 37(1), pages 281-300, January.
    4. Anna Barwinska-Małajowicz & Paweł Hydzik & Iwona Bak, 2021. "The Impact of the COVID-19 Pandemic on the Situation of the Unemployed in the Podkarpackie Voivodeship," European Research Studies Journal, European Research Studies Journal, vol. 0(4), pages 691-705.
    5. Simionescu, Mihaela & Raišienė, Agota Giedrė, 2021. "A bridge between sentiment indicators: What does Google Trends tell us about COVID-19 pandemic and employment expectations in the EU new member states?," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    6. van der Wielen, Wouter & Barrios, Salvador, 2021. "Economic sentiment during the COVID pandemic: Evidence from search behaviour in the EU," Journal of Economics and Business, Elsevier, vol. 115(C).
    7. Péter Benczúr & István Kónya, 2022. "Convergence to the Centre," Contributions to Economics, in: László Mátyás (ed.), Emerging European Economies after the Pandemic, chapter 0, pages 1-51, Springer.
    8. Francisco Corona & Graciela Gonz'alez-Far'ias & Jes'us L'opez-P'erez, 2021. "A nowcasting approach to generate timely estimates of Mexican economic activity: An application to the period of COVID-19," Papers 2101.10383, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Caperna, Giulio & Colagrossi, Marco & Geraci, Andrea & Mazzarella, Gianluca, 2022. "A babel of web-searches: Googling unemployment during the pandemic," Labour Economics, Elsevier, vol. 74(C).
    2. Brodeur, Abel & Clark, Andrew E. & Fleche, Sarah & Powdthavee, Nattavudh, 2021. "COVID-19, lockdowns and well-being: Evidence from Google Trends," Journal of Public Economics, Elsevier, vol. 193(C).
    3. Abay,Kibrom A. & Hirfrfot,Kibrom Tafere & Woldemichael,Andinet, 2020. "Winners and Losers from COVID-19 : Global Evidence from Google Search," Policy Research Working Paper Series 9268, The World Bank.
    4. van der Wielen, Wouter & Barrios, Salvador, 2021. "Economic sentiment during the COVID pandemic: Evidence from search behaviour in the EU," Journal of Economics and Business, Elsevier, vol. 115(C).
    5. Coble, David & Pincheira, Pablo, 2017. "Nowcasting Building Permits with Google Trends," MPRA Paper 76514, University Library of Munich, Germany.
    6. Louis‐Philippe Beland & Abel Brodeur & Derek Mikola & Taylor Wright, 2022. "The short‐term economic consequences of COVID‐19: Occupation tasks and mental health in Canada," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 55(S1), pages 214-247, February.
    7. Siliverstovs, Boriss & Wochner, Daniel S., 2018. "Google Trends and reality: Do the proportions match?," Journal of Economic Behavior & Organization, Elsevier, vol. 145(C), pages 1-23.
    8. Guven, Cahit & Sotirakopoulos, Panagiotis & Ulker, Aydogan, 2020. "Short-term Labour Market Effects of COVID-19 and the Associated National Lockdown in Australia: Evidence from Longitudinal Labour Force Survey," GLO Discussion Paper Series 635, Global Labor Organization (GLO).
    9. Simionescu, Mihaela & Raišienė, Agota Giedrė, 2021. "A bridge between sentiment indicators: What does Google Trends tell us about COVID-19 pandemic and employment expectations in the EU new member states?," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    10. Perroni, Carlo & Scharf, Kimberley & Talavera, Oleksandr & Vi, Linh, 2022. "Does online salience predict charitable giving? Evidence from SMS text donations," Journal of Economic Behavior & Organization, Elsevier, vol. 197(C), pages 134-149.
    11. Götz, Thomas B. & Knetsch, Thomas A., 2019. "Google data in bridge equation models for German GDP," International Journal of Forecasting, Elsevier, vol. 35(1), pages 45-66.
    12. Anastasiou, Dimitrios & Bragoudakis, Zacharias & Giannoulakis, Stelios, 2021. "Perceived vs actual financial crisis and bank credit standards: Is there any indication of self-fulfilling prophecy?," Research in International Business and Finance, Elsevier, vol. 58(C).
    13. Papadamou, Stephanos & Fassas, Athanasios & Kenourgios, Dimitris & Dimitriou, Dimitrios, 2020. "Direct and Indirect Effects of COVID-19 Pandemic on Implied Stock Market Volatility: Evidence from Panel Data Analysis," MPRA Paper 100020, University Library of Munich, Germany.
    14. Lea Immel & Florian Neumeier & Andreas Peichl, 2022. "The Unequal Consequences of the Covid‐19 Pandemic: Evidence from a Large Representative German Population Survey," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 68(2), pages 471-496, June.
    15. Anastasiou, Dimitrios & Drakos, Konstantinos, 2021. "European depositors’ behavior and crisis sentiment," Journal of Economic Behavior & Organization, Elsevier, vol. 184(C), pages 117-136.
    16. Mathias Huebener & Sevrin Waights & C. Katharina Spiess & Nico A. Siegel & Gert G. Wagner, 2021. "Parental well-being in times of Covid-19 in Germany," Review of Economics of the Household, Springer, vol. 19(1), pages 91-122, March.
    17. Monge, Manuel & Claudio-Quiroga, Gloria & Poza, Carlos, 2024. "Chinese economic behavior in times of covid-19. A new leading economic indicator based on Google trends," International Economics, Elsevier, vol. 177(C).
    18. Brodeur, Abel & Cook, Nikolai & Wright, Taylor, 2021. "On the effects of COVID-19 safer-at-home policies on social distancing, car crashes and pollution," Journal of Environmental Economics and Management, Elsevier, vol. 106(C).
    19. González-Fernández, Marcos & González-Velasco, Carmen, 2020. "An alternative approach to predicting bank credit risk in Europe with Google data," Finance Research Letters, Elsevier, vol. 35(C).
    20. Smales, L.A., 2021. "Investor attention and global market returns during the COVID-19 crisis," International Review of Financial Analysis, Elsevier, vol. 73(C).

    More about this item

    Keywords

    Unemployment; nowcast; random forest; covid-19; Google Trends; Difference-in-Differences;
    All these keywords.

    JEL classification:

    • E24 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Employment; Unemployment; Wages; Intergenerational Income Distribution; Aggregate Human Capital; Aggregate Labor Productivity
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jrs:wpaper:202004. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Benczur (email available below). General contact details of provider: https://edirc.repec.org/data/eejrcit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.