Some searches may not work properly. We apologize for the inconvenience.
My bibliography Save this articleDemand forecasting with user-generated online information
Author
Abstract
Suggested Citation
DOI: 10.1016/j.ijforecast.2018.03.005
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- V. Kumar & JeeWon Brianna Choi & Mallik Greene, 2017. "Synergistic effects of social media and traditional marketing on brand sales: capturing the time-varying effects," Journal of the Academy of Marketing Science, Springer, vol. 45(2), pages 268-288, March.
- Qinneng Xu & Yulia R Gel & L Leticia Ramirez Ramirez & Kusha Nezafati & Qingpeng Zhang & Kwok-Leung Tsui, 2017. "Forecasting influenza in Hong Kong with Google search queries and statistical model fusion," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-17, May.
- Dina Mayzlin & Yaniv Dover & Judith Chevalier, 2014.
"Promotional Reviews: An Empirical Investigation of Online Review Manipulation,"
American Economic Review, American Economic Association, vol. 104(8), pages 2421-2455, August.
- Dina Mayzlin & Yaniv Dover & Judith A. Chevalier, 2012. "Promotional Reviews: An Empirical Investigation of Online Review Manipulation," NBER Working Papers 18340, National Bureau of Economic Research, Inc.
- Hyndman, Rob J. & Khandakar, Yeasmin, 2008.
"Automatic Time Series Forecasting: The forecast Package for R,"
Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i03).
- Rob J. Hyndman & Yeasmin Khandakar, 2007. "Automatic time series forecasting: the forecast package for R," Monash Econometrics and Business Statistics Working Papers 6/07, Monash University, Department of Econometrics and Business Statistics.
- Shuba Srinivasan & Oliver J. Rutz & Koen Pauwels, 2016. "Paths to and off purchase: quantifying the impact of traditional marketing and online consumer activity," Journal of the Academy of Marketing Science, Springer, vol. 44(4), pages 440-453, July.
- Schneider, Matthew J. & Gupta, Sachin, 2016. "Forecasting sales of new and existing products using consumer reviews: A random projections approach," International Journal of Forecasting, Elsevier, vol. 32(2), pages 243-256.
- Lee, Jung Eun & Watkins, Brandi, 2016. "YouTube vloggers' influence on consumer luxury brand perceptions and intentions," Journal of Business Research, Elsevier, vol. 69(12), pages 5753-5760.
- Hamid, Alain & Heiden, Moritz, 2015. "Forecasting volatility with empirical similarity and Google Trends," Journal of Economic Behavior & Organization, Elsevier, vol. 117(C), pages 62-81.
- Jun, Seung-Pyo & Sung, Tae-Eung & Park, Hyun-Woo, 2017. "Forecasting by analogy using the web search traffic," Technological Forecasting and Social Change, Elsevier, vol. 115(C), pages 37-51.
- Bangwayo-Skeete, Prosper F. & Skeete, Ryan W., 2015. "Can Google data improve the forecasting performance of tourist arrivals? Mixed-data sampling approach," Tourism Management, Elsevier, vol. 46(C), pages 454-464.
- Kim, Taegu & Hong, Jungsik & Kang, Pilsung, 2015. "Box office forecasting using machine learning algorithms based on SNS data," International Journal of Forecasting, Elsevier, vol. 31(2), pages 364-390.
- Thomas Dimpfl & Stephan Jank, 2016.
"Can Internet Search Queries Help to Predict Stock Market Volatility?,"
European Financial Management, European Financial Management Association, vol. 22(2), pages 171-192, March.
- Dimpfl, Thomas & Jank, Stephan, 2011. "Can internet search queries help to predict stock market volatility?," CFR Working Papers 11-15, University of Cologne, Centre for Financial Research (CFR).
- Dimpfl, Thomas & Jank, Stephan, 2011. "Can Internet search queries help to predict stock market volatility?," University of Tübingen Working Papers in Business and Economics 18, University of Tuebingen, Faculty of Economics and Social Sciences, School of Business and Economics.
- D’Amuri, Francesco & Marcucci, Juri, 2017.
"The predictive power of Google searches in forecasting US unemployment,"
International Journal of Forecasting, Elsevier, vol. 33(4), pages 801-816.
- Francesco D'Amuri & Juri Marcucci, 2012. "The predictive power of Google searches in forecasting unemployment," Temi di discussione (Economic working papers) 891, Bank of Italy, Economic Research and International Relations Area.
- Dmitri Kuksov & Ron Shachar & Kangkang Wang, 2013. "Advertising and Consumers' Communications," Marketing Science, INFORMS, vol. 32(2), pages 294-309, March.
- Zeynalov, Ayaz, 2017. "Forecasting Tourist Arrivals in Prague: Google Econometrics," MPRA Paper 83268, University Library of Munich, Germany.
- Jukka Ruohonen & Sami Hyrynsalmi, 2017. "Evaluating the use of internet search volumes for time series modeling of sales in the video game industry," Electronic Markets, Springer;IIM University of St. Gallen, vol. 27(4), pages 351-370, November.
- Levent Bulut, 2018. "Google Trends and the forecasting performance of exchange rate models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 37(3), pages 303-315, April.
- Fantazzini, Dean & Toktamysova, Zhamal, 2015.
"Forecasting German car sales using Google data and multivariate models,"
International Journal of Production Economics, Elsevier, vol. 170(PA), pages 97-135.
- Fantazzini, Dean & Toktamysova, Zhamal, 2015. "Forecasting German Car Sales Using Google Data and Multivariate Models," MPRA Paper 67110, University Library of Munich, Germany.
- Tashman, Leonard J., 2000. "Out-of-sample tests of forecasting accuracy: an analysis and review," International Journal of Forecasting, Elsevier, vol. 16(4), pages 437-450.
- Steven L. Scott & Hal R. Varian, 2015.
"Bayesian Variable Selection for Nowcasting Economic Time Series,"
NBER Chapters, in: Economic Analysis of the Digital Economy, pages 119-135,
National Bureau of Economic Research, Inc.
- Steven L. Scott & Hal R. Varian, 2013. "Bayesian Variable Selection for Nowcasting Economic Time Series," NBER Working Papers 19567, National Bureau of Economic Research, Inc.
- Huberty, Mark, 2015. "Can we vote with our tweet? On the perennial difficulty of election forecasting with social media," International Journal of Forecasting, Elsevier, vol. 31(3), pages 992-1007.
- Marcelo S. Perlin & João F. Caldeira & André A. P. Santos & Martin Pontuschka, 2017. "Can We Predict the Financial Markets Based on Google's Search Queries?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 36(4), pages 454-467, July.
- Wendy W. Moe & David A. Schweidel, 2012. "Online Product Opinions: Incidence, Evaluation, and Evolution," Marketing Science, INFORMS, vol. 31(3), pages 372-386, May.
- Lynn Wu & Erik Brynjolfsson, 2015. "The Future of Prediction: How Google Searches Foreshadow Housing Prices and Sales," NBER Chapters, in: Economic Analysis of the Digital Economy, pages 89-118, National Bureau of Economic Research, Inc.
- Simeon Vosen & Torsten Schmidt, 2011.
"Forecasting private consumption: survey‐based indicators vs. Google trends,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 30(6), pages 565-578, September.
- Schmidt, Torsten & Vosen, Simeon, 2009. "Forecasting Private Consumption: Survey-based Indicators vs. Google Trends," Ruhr Economic Papers 155, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
- Hyunyoung Choi & Hal Varian, 2012. "Predicting the Present with Google Trends," The Economic Record, The Economic Society of Australia, vol. 88(s1), pages 2-9, June.
- Declan Butler, 2013. "When Google got flu wrong," Nature, Nature, vol. 494(7436), pages 155-156, February.
- Shun†Yang Lee & Liangfei Qiu & Andrew Whinston, 2018. "Sentiment Manipulation in Online Platforms: An Analysis of Movie Tweets," Production and Operations Management, Production and Operations Management Society, vol. 27(3), pages 393-416, March.
- Sagaert, Yves R. & Aghezzaf, El-Houssaine & Kourentzes, Nikolaos & Desmet, Bram, 2018. "Tactical sales forecasting using a very large set of macroeconomic indicators," European Journal of Operational Research, Elsevier, vol. 264(2), pages 558-569.
- Hong-Hee Won & Woojae Myung & Gil-Young Song & Won-Hee Lee & Jong-Won Kim & Bernard J Carroll & Doh Kwan Kim, 2013. "Predicting National Suicide Numbers with Social Media Data," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-6, April.
- Liwen Vaughan & Yue Chen, 2015. "Data mining from web search queries: A comparison of google trends and baidu index," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 66(1), pages 13-22, January.
- Shannon M. Fast & Louis Kim & Emily L. Cohn & Sumiko R. Mekaru & John S. Brownstein & Natasha Markuzon, 2018. "Predicting social response to infectious disease outbreaks from internet-based news streams," Annals of Operations Research, Springer, vol. 263(1), pages 551-564, April.
- Guiyang Xiong & Sundar Bharadwaj, 2014. "Prerelease Buzz Evolution Patterns and New Product Performance," Marketing Science, INFORMS, vol. 33(3), pages 401-421, May.
- Boylan, John E. & Goodwin, Paul & Mohammadipour, Maryam & Syntetos, Aris A., 2015. "Reproducibility in forecasting research," International Journal of Forecasting, Elsevier, vol. 31(1), pages 79-90.
- Yu, Lean & Zhao, Yaqing & Tang, Ling & Yang, Zebin, 2019. "Online big data-driven oil consumption forecasting with Google trends," International Journal of Forecasting, Elsevier, vol. 35(1), pages 213-223.
- Bijl, Laurens & Kringhaug, Glenn & Molnár, Peter & Sandvik, Eirik, 2016. "Google searches and stock returns," International Review of Financial Analysis, Elsevier, vol. 45(C), pages 150-156.
- Davydenko, Andrey & Fildes, Robert, 2013. "Measuring forecasting accuracy: The case of judgmental adjustments to SKU-level demand forecasts," International Journal of Forecasting, Elsevier, vol. 29(3), pages 510-522.
- Chris Hand & Guy Judge, 2012. "Searching for the picture: forecasting UK cinema admissions using Google Trends data," Applied Economics Letters, Taylor & Francis Journals, vol. 19(11), pages 1051-1055, July.
- Armstrong, J. Scott & Collopy, Fred, 1992. "Error measures for generalizing about forecasting methods: Empirical comparisons," International Journal of Forecasting, Elsevier, vol. 8(1), pages 69-80, June.
- Huang, Xiankai & Zhang, Lifeng & Ding, Yusi, 2017. "The Baidu Index: Uses in predicting tourism flows –A case study of the Forbidden City," Tourism Management, Elsevier, vol. 58(C), pages 301-306.
- Wang, Xia & Yu, Chunling & Wei, Yujie, 2012. "Social Media Peer Communication and Impacts on Purchase Intentions: A Consumer Socialization Framework," Journal of Interactive Marketing, Elsevier, vol. 26(4), pages 198-208.
- Stephan Seiler & Song Yao & Wenbo Wang, 2017. "Does Online Word of Mouth Increase Demand? (And How?) Evidence from a Natural Experiment," Marketing Science, INFORMS, vol. 36(6), pages 838-861, November.
- Koning, Alex J. & Franses, Philip Hans & Hibon, Michele & Stekler, H.O., 2005. "The M3 competition: Statistical tests of the results," International Journal of Forecasting, Elsevier, vol. 21(3), pages 397-409.
- Siliverstovs, Boriss & Wochner, Daniel S., 2018. "Google Trends and reality: Do the proportions match?," Journal of Economic Behavior & Organization, Elsevier, vol. 145(C), pages 1-23.
- Li, Xin & Pan, Bing & Law, Rob & Huang, Xiankai, 2017. "Forecasting tourism demand with composite search index," Tourism Management, Elsevier, vol. 59(C), pages 57-66.
- Nuno Barreira & Pedro Godinho & Paulo Melo, 2013. "Nowcasting unemployment rate and new car sales in south-western Europe with Google Trends," Netnomics, Springer, vol. 14(3), pages 129-165, November.
- Rivera, Roberto, 2016. "A dynamic linear model to forecast hotel registrations in Puerto Rico using Google Trends data," Tourism Management, Elsevier, vol. 57(C), pages 12-20.
- Jacques Bughin, 2015. "Google searches and twitter mood: nowcasting telecom sales performance," Netnomics, Springer, vol. 16(1), pages 87-105, August.
- Paul Smith, 2016. "Google's MIDAS Touch: Predicting UK Unemployment with Internet Search Data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 35(3), pages 263-284, April.
- Tonya Boone & Ram Ganeshan & Robert L. Hicks & Nada R. Sanders, 2018. "Can Google Trends Improve Your Sales Forecast?," Production and Operations Management, Production and Operations Management Society, vol. 27(10), pages 1770-1774, October.
- Seshadri Tirunillai & Gerard J. Tellis, 2012. "Does Chatter Really Matter? Dynamics of User-Generated Content and Stock Performance," Marketing Science, INFORMS, vol. 31(2), pages 198-215, March.
- Xinxin Li & Lorin M. Hitt, 2008. "Self-Selection and Information Role of Online Product Reviews," Information Systems Research, INFORMS, vol. 19(4), pages 456-474, December.
- Tonya Boone & Ram Ganeshan & Robert L. Hicks, 2015. "Incorporating Google Trends Data Into Sales Forecasting," Foresight: The International Journal of Applied Forecasting, International Institute of Forecasters, issue 38, pages 9-14, Summer.
- Xiao Liu & Param Vir Singh & Kannan Srinivasan, 2016. "A Structured Analysis of Unstructured Big Data by Leveraging Cloud Computing," Marketing Science, INFORMS, vol. 35(3), pages 363-388, May.
- Mavragani, Amaryllis & Tsagarakis, Konstantinos P., 2016. "YES or NO: Predicting the 2015 GReferendum results using Google Trends," Technological Forecasting and Social Change, Elsevier, vol. 109(C), pages 1-5.
- Armstrong, J. Scott, 2006. "Findings from evidence-based forecasting: Methods for reducing forecast error," International Journal of Forecasting, Elsevier, vol. 22(3), pages 583-598.
- David Godes & José C. Silva, 2012. "Sequential and Temporal Dynamics of Online Opinion," Marketing Science, INFORMS, vol. 31(3), pages 448-473, May.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Jun Hao & Xiaolei Sun & Qianqian Feng, 2020. "A Novel Ensemble Approach for the Forecasting of Energy Demand Based on the Artificial Bee Colony Algorithm," Energies, MDPI, vol. 13(3), pages 1-25, January.
- Fildes, Robert & Kolassa, Stephan & Ma, Shaohui, 2022. "Post-script—Retail forecasting: Research and practice," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1319-1324.
- Liu, Ying & Wen, Long & Liu, Han & Song, Haiyan, 2024. "Predicting tourism recovery from COVID-19: A time-varying perspective," Economic Modelling, Elsevier, vol. 135(C).
- Levent Bulut, 2018. "Google Trends and the forecasting performance of exchange rate models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 37(3), pages 303-315, April.
- Fildes, Robert & Ma, Shaohui & Kolassa, Stephan, 2022. "Retail forecasting: Research and practice," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1283-1318.
- Donthu, Naveen & Kumar, Satish & Pandey, Neeraj & Pandey, Nitesh & Mishra, Akanksha, 2021. "Mapping the electronic word-of-mouth (eWOM) research: A systematic review and bibliometric analysis," Journal of Business Research, Elsevier, vol. 135(C), pages 758-773.
- Shuyun Ren & Hau-Ling Chan & Tana Siqin, 2020. "Demand forecasting in retail operations for fashionable products: methods, practices, and real case study," Annals of Operations Research, Springer, vol. 291(1), pages 761-777, August.
- Liu, Zhenyuan & Han, Shuihua & Li, Chao & Gupta, Shivam & Sivarajah, Uthayasankar, 2022. "Leveraging customer engagement to improve the operational efficiency of social commerce start-ups," Journal of Business Research, Elsevier, vol. 140(C), pages 572-582.
- Fildes, Robert & Ma, Shaohui & Kolassa, Stephan, 2019. "Retail forecasting: research and practice," MPRA Paper 89356, University Library of Munich, Germany.
- Chuan Zhang & Yu-Xin Tian & Ling-Wei Fan, 2020. "Improving the Bass model’s predictive power through online reviews, search traffic and macroeconomic data," Annals of Operations Research, Springer, vol. 295(2), pages 881-922, December.
- Gang Xie & Xin Li & Yatong Qian & Shouyang Wang, 2021. "Forecasting tourism demand with KPCA-based web search indexes," Tourism Economics, , vol. 27(4), pages 721-743, June.
- Boone, Tonya & Ganeshan, Ram & Jain, Aditya & Sanders, Nada R., 2019. "Forecasting sales in the supply chain: Consumer analytics in the big data era," International Journal of Forecasting, Elsevier, vol. 35(1), pages 170-180.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Chumnumpan, Pattarin & Shi, Xiaohui, 2019. "Understanding new products’ market performance using Google Trends," Australasian marketing journal, Elsevier, vol. 27(2), pages 91-103.
- Boone, Tonya & Ganeshan, Ram & Jain, Aditya & Sanders, Nada R., 2019. "Forecasting sales in the supply chain: Consumer analytics in the big data era," International Journal of Forecasting, Elsevier, vol. 35(1), pages 170-180.
- Zhang, Chuan & Tian, Yu-Xin & Fan, Zhi-Ping, 2022. "Forecasting sales using online review and search engine data: A method based on PCA–DSFOA–BPNN," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1005-1024.
- Emmanuel Sirimal Silva & Hossein Hassani & Dag Øivind Madsen & Liz Gee, 2019. "Googling Fashion: Forecasting Fashion Consumer Behaviour Using Google Trends," Social Sciences, MDPI, vol. 8(4), pages 1-23, April.
- France, Stephen L. & Shi, Yuying & Kazandjian, Brett, 2021. "Web Trends: A valuable tool for business research," Journal of Business Research, Elsevier, vol. 132(C), pages 666-679.
- Chuan Zhang & Yu-Xin Tian & Ling-Wei Fan, 2020. "Improving the Bass model’s predictive power through online reviews, search traffic and macroeconomic data," Annals of Operations Research, Springer, vol. 295(2), pages 881-922, December.
- Cebrián, Eduardo & Domenech, Josep, 2024. "Addressing Google Trends inconsistencies," Technological Forecasting and Social Change, Elsevier, vol. 202(C).
- Zhongchen Song & Tom Coupé, 2023.
"Predicting Chinese consumption series with Baidu,"
Journal of Chinese Economic and Business Studies, Taylor & Francis Journals, vol. 21(3), pages 429-463, July.
- Zhongchen Song & Tom Coupé, 2022. "Predicting Chinese consumption series with Baidu," Working Papers in Economics 22/19, University of Canterbury, Department of Economics and Finance.
- Coble, David & Pincheira, Pablo, 2017. "Nowcasting Building Permits with Google Trends," MPRA Paper 76514, University Library of Munich, Germany.
- Monge, Manuel & Claudio-Quiroga, Gloria & Poza, Carlos, 2024. "Chinese economic behavior in times of covid-19. A new leading economic indicator based on Google trends," International Economics, Elsevier, vol. 177(C).
- Long Wen & Chang Liu & Haiyan Song, 2019. "Forecasting tourism demand using search query data: A hybrid modelling approach," Tourism Economics, , vol. 25(3), pages 309-329, May.
- Abay,Kibrom A. & Hirfrfot,Kibrom Tafere & Woldemichael,Andinet, 2020. "Winners and Losers from COVID-19 : Global Evidence from Google Search," Policy Research Working Paper Series 9268, The World Bank.
- Caperna, Giulio & Colagrossi, Marco & Geraci, Andrea & Mazzarella, Gianluca, 2022. "A babel of web-searches: Googling unemployment during the pandemic," Labour Economics, Elsevier, vol. 74(C).
- Dean Fantazzini & Julia Pushchelenko & Alexey Mironenkov & Alexey Kurbatskii, 2021.
"Forecasting Internal Migration in Russia Using Google Trends: Evidence from Moscow and Saint Petersburg,"
Forecasting, MDPI, vol. 3(4), pages 1-30, October.
- Fantazzini, Dean & Pushchelenko, Julia & Mironenkov, Alexey & Kurbatskii, Alexey, 2021. "Forecasting internal migration in Russia using Google Trends: Evidence from Moscow and Saint Petersburg," MPRA Paper 110452, University Library of Munich, Germany.
- Oliver Schaer & Nikolaos Kourentzes & Robert Fildes, 2022. "Predictive competitive intelligence with prerelease online search traffic," Production and Operations Management, Production and Operations Management Society, vol. 31(10), pages 3823-3839, October.
- Blazquez, Desamparados & Domenech, Josep, 2018. "Big Data sources and methods for social and economic analyses," Technological Forecasting and Social Change, Elsevier, vol. 130(C), pages 99-113.
- Gang Xie & Xin Li & Yatong Qian & Shouyang Wang, 2021. "Forecasting tourism demand with KPCA-based web search indexes," Tourism Economics, , vol. 27(4), pages 721-743, June.
- F. Antolini & L. Grassini, 2019. "Foreign arrivals nowcasting in Italy with Google Trends data," Quality & Quantity: International Journal of Methodology, Springer, vol. 53(5), pages 2385-2401, September.
- Benedikt Maas, 2020.
"Short‐term forecasting of the US unemployment rate,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(3), pages 394-411, April.
- Maas, Benedikt, 2019. "Short-term forecasting of the US unemployment rate," MPRA Paper 94066, University Library of Munich, Germany.
- Serhan Cevik, 2022.
"Where should we go? Internet searches and tourist arrivals,"
International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(4), pages 4048-4057, October.
- Mr. Serhan Cevik, 2020. "Where Should We Go? Internet Searches and Tourist Arrivals," IMF Working Papers 2020/022, International Monetary Fund.
More about this item
Keywords
Google trends; Social media; Leading indicators; Product life-cycle; Search traffic; Electronic word-of-mouth;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:35:y:2019:i:1:p:197-212. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.