IDEAS home Printed from https://ideas.repec.org/a/kap/netnom/v16y2015i1p87-105.html
   My bibliography  Save this article

Google searches and twitter mood: nowcasting telecom sales performance

Author

Listed:
  • Jacques Bughin

    ()

Abstract

The web currently carries vast amounts of information as to what consumers search for, comment on, and purchase in the real economy. This paper leverages a mash-up of online Google search queries and of social media comments (from Twitter, Facebook and other blogs) to “nowcast” the product sales evolution of the major telecom companies in Belgium. A few findings stand out. With an Error Correction Mechanism (ECM) model of sales dynamics, a co-integration relationship prevails between social media valence (respectively, between search query) and telecom operators’ sales for both internet and digital television access provision (respectively, for fixed telephony provision). Elasticity estimates on sales are relatively larger for valence than for search queries. The ECM model with nowcasting variables improves telecom sales forecasts by about 25 % versus a naïve autoregressive sales model. Copyright Springer Science+Business Media New York 2015

Suggested Citation

  • Jacques Bughin, 2015. "Google searches and twitter mood: nowcasting telecom sales performance," Netnomics, Springer, vol. 16(1), pages 87-105, August.
  • Handle: RePEc:kap:netnom:v:16:y:2015:i:1:p:87-105
    DOI: 10.1007/s11066-015-9096-5
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11066-015-9096-5
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nikolaos Askitas & Klaus F. Zimmermann, 2009. "Google Econometrics and Unemployment Forecasting," Applied Economics Quarterly (formerly: Konjunkturpolitik), Duncker & Humblot, Berlin, vol. 55(2), pages 107-120.
    2. D'Amuri, Francesco & Marcucci, Juri, 2009. "'Google it!' Forecasting the US unemployment rate with a Google job search index," ISER Working Paper Series 2009-32, Institute for Social and Economic Research.
    3. Johansen, Soren & Juselius, Katarina, 1990. "Maximum Likelihood Estimation and Inference on Cointegration--With Applications to the Demand for Money," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 52(2), pages 169-210, May.
    4. Joakim Westerlund, 2007. "Testing for Error Correction in Panel Data," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 69(6), pages 709-748, December.
    5. repec:eee:jouret:v:84:y:2008:i:2:p:233-242 is not listed on IDEAS
    6. Persyn, Damiaan & Westerlund, Joakim, 2008. "Error–correction–based cointegration tests for panel data," Stata Journal, StataCorp LP, vol. 8(2), pages 1-10.
    7. Claude Lopez, 2009. "A Panel Unit Root Test with Good Power in Small Samples," Econometric Reviews, Taylor & Francis Journals, vol. 28(4), pages 295-313.
    8. Pesaran, M.H., 2004. "‘General Diagnostic Tests for Cross Section Dependence in Panels’," Cambridge Working Papers in Economics 0435, Faculty of Economics, University of Cambridge.
    9. Hyunyoung Choi & Hal Varian, 2012. "Predicting the Present with Google Trends," The Economic Record, The Economic Society of Australia, vol. 88(s1), pages 2-9, June.
    10. Simeon Vosen & Torsten Schmidt, 2011. "Forecasting private consumption: survey‐based indicators vs. Google trends," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 30(6), pages 565-578, September.
    11. Nuno Barreira & Pedro Godinho & Paulo Melo, 2013. "Nowcasting unemployment rate and new car sales in south-western Europe with Google Trends," Netnomics, Springer, vol. 14(3), pages 129-165, November.
    12. Caterina Giannetti, 2015. "Unit roots and the dynamics of market shares: an analysis using an Italian banking micro-panel," Empirical Economics, Springer, vol. 48(2), pages 537-555, March.
    13. Meltem Gulenay Chadwick & Gonul Sengul, 2015. "Nowcasting the Unemployment Rate in Turkey : Let's ask Google," Central Bank Review, Research and Monetary Policy Department, Central Bank of the Republic of Turkey, vol. 15(3), pages 15-40.
    14. Engle, Robert & Granger, Clive, 2015. "Co-integration and error correction: Representation, estimation, and testing," Applied Econometrics, Publishing House "SINERGIA PRESS", vol. 39(3), pages 106-135.
    15. Vosen, Simeon & Schmidt, Torsten, 2012. "A monthly consumption indicator for Germany based on Internet search query data," EconStor Open Access Articles, ZBW - Leibniz Information Centre for Economics, pages 683-687.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:eee:intfor:v:35:y:2019:i:1:p:197-212 is not listed on IDEAS
    2. repec:spr:annopr:v:270:y:2018:i:1:d:10.1007_s10479-016-2296-z is not listed on IDEAS
    3. repec:gam:jsusta:v:11:y:2019:i:3:p:913-:d:204814 is not listed on IDEAS

    More about this item

    Keywords

    Google trends; Social media; Nowcasting;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:netnom:v:16:y:2015:i:1:p:87-105. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Mallaigh Nolan). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.