Foreign arrivals nowcasting in Italy with Google Trends data
Author
Abstract
Suggested Citation
DOI: 10.1007/s11135-018-0748-z
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Ho, Chaang-Iuan & Lin, Meng-Hui & Chen, Hui-Mei, 2012. "Web users’ behavioural patterns of tourism information search: From online to offline," Tourism Management, Elsevier, vol. 33(6), pages 1468-1482.
- Magee, Lonnie, 1987.
"A note on Cochrane-Orcutt estimation,"
Journal of Econometrics, Elsevier, vol. 35(2-3), pages 211-218, July.
- Magee, L., 1985. "A note on Cochrane - Orcutt estimation," LIDAM Discussion Papers CORE 1985019, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- MAGEE, Lonnie, 1987. "A note on Cochrane-Orcutt estimation," LIDAM Reprints CORE 753, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Nikolaos Askitas & Klaus F. Zimmermann, 2009.
"Google Econometrics and Unemployment Forecasting,"
Applied Economics Quarterly (formerly: Konjunkturpolitik), Duncker & Humblot, Berlin, vol. 55(2), pages 107-120.
- Nikos Askitas & Klaus F. Zimmermann, 2009. "Google Econometrics and Unemployment Forecasting," RatSWD Research Notes 41, German Data Forum (RatSWD).
- Askitas, Nikos & Zimmermann, Klaus F., 2009. "Google Econometrics and Unemployment Forecasting," IZA Discussion Papers 4201, Institute of Labor Economics (IZA).
- Nikos Askitas & Klaus F. Zimmermann, 2009. "Google Econometrics and Unemployment Forecasting," Discussion Papers of DIW Berlin 899, DIW Berlin, German Institute for Economic Research.
- Athanasopoulos, George & Hyndman, Rob J. & Song, Haiyan & Wu, Doris C., 2011.
"The tourism forecasting competition,"
International Journal of Forecasting, Elsevier, vol. 27(3), pages 822-844, July.
- Athanasopoulos, George & Hyndman, Rob J. & Song, Haiyan & Wu, Doris C., 2011. "The tourism forecasting competition," International Journal of Forecasting, Elsevier, vol. 27(3), pages 822-844.
- George Athanasopoulos & Rob J Hyndman & Haiyan Song & Doris C Wu, 2008. "The tourism forecasting competition," Monash Econometrics and Business Statistics Working Papers 10/08, Monash University, Department of Econometrics and Business Statistics, revised Oct 2009.
- Engle, Robert & Granger, Clive, 2015.
"Co-integration and error correction: Representation, estimation, and testing,"
Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 39(3), pages 106-135.
- Engle, Robert F & Granger, Clive W J, 1987. "Co-integration and Error Correction: Representation, Estimation, and Testing," Econometrica, Econometric Society, vol. 55(2), pages 251-276, March.
- Zeileis, Achim, 2004. "Econometric Computing with HC and HAC Covariance Matrix Estimators," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 11(i10).
- Raun, Janika & Ahas, Rein & Tiru, Margus, 2016. "Measuring tourism destinations using mobile tracking data," Tourism Management, Elsevier, vol. 57(C), pages 202-212.
- Gunter, Ulrich & Önder, Irem, 2016. "Forecasting city arrivals with Google Analytics," Annals of Tourism Research, Elsevier, vol. 61(C), pages 199-212.
- Hyndman, Rob J. & Khandakar, Yeasmin, 2008.
"Automatic Time Series Forecasting: The forecast Package for R,"
Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i03).
- Rob J. Hyndman & Yeasmin Khandakar, 2007. "Automatic time series forecasting: the forecast package for R," Monash Econometrics and Business Statistics Working Papers 6/07, Monash University, Department of Econometrics and Business Statistics.
- Álvaro Matias & Peter Nijkamp & Manuela Sarmento (ed.), 2013. "Quantitative Methods in Tourism Economics," Springer Books, Springer, edition 127, number 978-3-7908-2879-5, December.
- Concha Artola & Fernando Pinto & Pablo de Pedraza García, 2015. "Can internet searches forecast tourism inflows?," International Journal of Manpower, Emerald Group Publishing Limited, vol. 36(1), pages 103-116, April.
- Hyunyoung Choi & Hal Varian, 2012. "Predicting the Present with Google Trends," The Economic Record, The Economic Society of Australia, vol. 88(s1), pages 2-9, June.
- Simeon Vosen & Torsten Schmidt, 2011.
"Forecasting private consumption: survey‐based indicators vs. Google trends,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 30(6), pages 565-578, September.
- Schmidt, Torsten & Vosen, Simeon, 2009. "Forecasting Private Consumption: Survey-based Indicators vs. Google Trends," Ruhr Economic Papers 155, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
- Bangwayo-Skeete, Prosper F. & Skeete, Ryan W., 2015. "Can Google data improve the forecasting performance of tourist arrivals? Mixed-data sampling approach," Tourism Management, Elsevier, vol. 46(C), pages 454-464.
- Declan Butler, 2013. "When Google got flu wrong," Nature, Nature, vol. 494(7436), pages 155-156, February.
- Ashley, Richard, 2003. "Statistically significant forecasting improvements: how much out-of-sample data is likely necessary?," International Journal of Forecasting, Elsevier, vol. 19(2), pages 229-239.
- Rivera, Roberto, 2016. "A dynamic linear model to forecast hotel registrations in Puerto Rico using Google Trends data," Tourism Management, Elsevier, vol. 57(C), pages 12-20.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Marta Crispino & Vincenzo Mariani, 2023. "A tool to nowcast tourist overnight stays with payment data and complementary indicators," Questioni di Economia e Finanza (Occasional Papers) 746, Bank of Italy, Economic Research and International Relations Area.
- Serhan Cevik, 2022.
"Where should we go? Internet searches and tourist arrivals,"
International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(4), pages 4048-4057, October.
- Mr. Serhan Cevik, 2020. "Where Should We Go? Internet Searches and Tourist Arrivals," IMF Working Papers 2020/022, International Monetary Fund.
- Fernando Delbianco & Andrés Fioriti & Fernando Tohmé & Federico Contiggiani, 2022. "A Tale of two narratives: assessing the sociological hypothesis of the appeal of the US dollar in Argentina," Quality & Quantity: International Journal of Methodology, Springer, vol. 56(5), pages 3519-3537, October.
- Han Liu & Yongjing Wang & Haiyan Song & Ying Liu, 2023. "Measuring tourism demand nowcasting performance using a monotonicity test," Tourism Economics, , vol. 29(5), pages 1302-1327, August.
- Azmat Gani, 2022. "Using a consumer choice model to explain the effect of the newly developed oxford COVID-19 government stringency measure on hotel occupancy rates," Quality & Quantity: International Journal of Methodology, Springer, vol. 56(6), pages 4313-4333, December.
- Massimiliano Giacalone & Raffaele Mattera & Eugenia Nissi, 2020. "Economic indicators forecasting in presence of seasonal patterns: time series revision and prediction accuracy," Quality & Quantity: International Journal of Methodology, Springer, vol. 54(1), pages 67-84, February.
- Ahmed Shoukry Rashad, 2022. "The Power of Travel Search Data in Forecasting the Tourism Demand in Dubai," Forecasting, MDPI, vol. 4(3), pages 1-11, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Long Wen & Chang Liu & Haiyan Song, 2019. "Forecasting tourism demand using search query data: A hybrid modelling approach," Tourism Economics, , vol. 25(3), pages 309-329, May.
- Ulrich Gunter & Irem Önder & Stefan Gindl, 2019. "Exploring the predictive ability of LIKES of posts on the Facebook pages of four major city DMOs in Austria," Tourism Economics, , vol. 25(3), pages 375-401, May.
- Gang Xie & Xin Li & Yatong Qian & Shouyang Wang, 2021. "Forecasting tourism demand with KPCA-based web search indexes," Tourism Economics, , vol. 27(4), pages 721-743, June.
- Zeynalov, Ayaz, 2017. "Forecasting Tourist Arrivals in Prague: Google Econometrics," MPRA Paper 83268, University Library of Munich, Germany.
- Katerina Volchek & Anyu Liu & Haiyan Song & Dimitrios Buhalis, 2019. "Forecasting tourist arrivals at attractions: Search engine empowered methodologies," Tourism Economics, , vol. 25(3), pages 425-447, May.
- Schaer, Oliver & Kourentzes, Nikolaos & Fildes, Robert, 2019. "Demand forecasting with user-generated online information," International Journal of Forecasting, Elsevier, vol. 35(1), pages 197-212.
- Guizzardi, Andrea & Pons, Flavio Maria Emanuele & Angelini, Giovanni & Ranieri, Ercolino, 2021. "Big data from dynamic pricing: A smart approach to tourism demand forecasting," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1049-1060.
- A Fronzetti Colladon & B Guardabascio & R Innarella, 2021. "Using social network and semantic analysis to analyze online travel forums and forecast tourism demand," Papers 2105.07727, arXiv.org.
- Serhan Cevik, 2022.
"Where should we go? Internet searches and tourist arrivals,"
International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(4), pages 4048-4057, October.
- Mr. Serhan Cevik, 2020. "Where Should We Go? Internet Searches and Tourist Arrivals," IMF Working Papers 2020/022, International Monetary Fund.
- Tomas Havranek & Ayaz Zeynalov, 2021.
"Forecasting tourist arrivals: Google Trends meets mixed-frequency data,"
Tourism Economics, , vol. 27(1), pages 129-148, February.
- Havranek, Tomas & Zeynalov, Ayaz, 2018. "Forecasting Tourist Arrivals: Google Trends Meets Mixed Frequency Data," MPRA Paper 90205, University Library of Munich, Germany.
- Pietro Giorgio Lovaglio & Mario Mezzanzanica & Emilio Colombo, 2020. "Comparing time series characteristics of official and web job vacancy data," Quality & Quantity: International Journal of Methodology, Springer, vol. 54(1), pages 85-98, February.
- Havranek, Tomas & Zeynalov, Ayaz, 2018. "Forecasting Tourist Arrivals with Google Trends and Mixed Frequency Data," EconStor Preprints 187420, ZBW - Leibniz Information Centre for Economics.
- Costanza Catalano & Andrea Carboni & Claudio Doria, 2023. "How can Big Data improve the quality of tourism statistics? The Bank of Italy's experience in compiling the "travel" item in the Balance of Payments," Questioni di Economia e Finanza (Occasional Papers) 761, Bank of Italy, Economic Research and International Relations Area.
- Ling Tang & Chengyuan Zhang & Tingfei Li & Ling Li, 2021. "A novel BEMD-based method for forecasting tourist volume with search engine data," Tourism Economics, , vol. 27(5), pages 1015-1038, August.
- Jacques Bughin, 2015. "Google searches and twitter mood: nowcasting telecom sales performance," Netnomics, Springer, vol. 16(1), pages 87-105, August.
- Monge, Manuel & Claudio-Quiroga, Gloria & Poza, Carlos, 2024. "Chinese economic behavior in times of covid-19. A new leading economic indicator based on Google trends," International Economics, Elsevier, vol. 177(C).
- Eden Xiaoying Jiao & Jason Li Chen, 2019. "Tourism forecasting: A review of methodological developments over the last decade," Tourism Economics, , vol. 25(3), pages 469-492, May.
- Nikolaos Askitas & Klaus F. Zimmermann, 2015.
"The internet as a data source for advancement in social sciences,"
International Journal of Manpower, Emerald Group Publishing Limited, vol. 36(1), pages 2-12, April.
- Nikolaos Askitas & Klaus F. Zimmermann, 2015. "The Internet as a Data Source for Advancement in Social Sciences," RatSWD Working Papers 248, German Data Forum (RatSWD).
- Askitas, Nikos & Zimmermann, Klaus F., 2015. "The Internet as a Data Source for Advancement in Social Sciences," IZA Discussion Papers 8899, Institute of Labor Economics (IZA).
- Cebrián, Eduardo & Domenech, Josep, 2024. "Addressing Google Trends inconsistencies," Technological Forecasting and Social Change, Elsevier, vol. 202(C).
- Götz, Thomas B. & Knetsch, Thomas A., 2019.
"Google data in bridge equation models for German GDP,"
International Journal of Forecasting, Elsevier, vol. 35(1), pages 45-66.
- Götz, Thomas B. & Knetsch, Thomas A., 2017. "Google data in bridge equation models for German GDP," Discussion Papers 18/2017, Deutsche Bundesbank.
More about this item
Keywords
Nowcasting; Tourism demand; Google Trends data;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:qualqt:v:53:y:2019:i:5:d:10.1007_s11135-018-0748-z. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.