Association of COVID‐19 with lifestyle behaviours and socio‐economic variables in Turkey: An analysis of Google Trends
Author
Abstract
Suggested Citation
DOI: 10.1002/hpm.3342
Download full text from publisher
References listed on IDEAS
- Caperna, Giulio & Colagrossi, Marco & Geraci, Andrea & Mazzarella, Gianluca, 2020. "Googling Unemployment During the Pandemic: Inference and Nowcast Using Search Data," JRC Working Papers in Economics and Finance 2020-04, Joint Research Centre, European Commission.
- Caitlin Rivers & Jean-Paul Chretien & Steven Riley & Julie A. Pavlin & Alexandra Woodward & David Brett-Major & Irina Maljkovic Berry & Lindsay Morton & Richard G. Jarman & Matthew Biggerstaff & Micha, 2019. "Using “outbreak science” to strengthen the use of models during epidemics," Nature Communications, Nature, vol. 10(1), pages 1-3, December.
- Jeremy Ginsberg & Matthew H. Mohebbi & Rajan S. Patel & Lynnette Brammer & Mark S. Smolinski & Larry Brilliant, 2009. "Detecting influenza epidemics using search engine query data," Nature, Nature, vol. 457(7232), pages 1012-1014, February.
- Fajar, Muhammad & Prasetyo, Octavia Rizky & Nonalisa, Septiarida & Wahyudi, Wahyudi, 2020. "Forecasting unemployment rate in the time of COVID-19 pandemic using Google trends data (case of Indonesia)," MPRA Paper 105042, University Library of Munich, Germany, revised 30 Nov 2020.
- Chiara Sotis, 2021. "How do Google searches for symptoms, news and unemployment interact during COVID-19? A Lotka–Volterra analysis of google trends data," Quality & Quantity: International Journal of Methodology, Springer, vol. 55(6), pages 2001-2016, December.
- Sebastian Doerr & Leonardo Gambacorta, 2020. "Identifying regions at risk with Google Trends: the impact of Covid-19 on US labour markets," BIS Bulletins 8, Bank for International Settlements.
- Arora, Vishal S. & McKee, Martin & Stuckler, David, 2019. "Google Trends: Opportunities and limitations in health and health policy research," Health Policy, Elsevier, vol. 123(3), pages 338-341.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Artur Strzelecki, 2020. "Google Medical Update: Why Is the Search Engine Decreasing Visibility of Health and Medical Information Websites?," IJERPH, MDPI, vol. 17(4), pages 1-13, February.
- Daniel E. O'Leary & Veda C. Storey, 2020. "A Google–Wikipedia–Twitter Model as a Leading Indicator of the Numbers of Coronavirus Deaths," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 27(3), pages 151-158, July.
- Simionescu, Mihaela & Cifuentes-Faura, Javier, 2022. "Can unemployment forecasts based on Google Trends help government design better policies? An investigation based on Spain and Portugal," Journal of Policy Modeling, Elsevier, vol. 44(1), pages 1-21.
- Soo Beom Choi & Juhyeon Kim & Insung Ahn, 2019. "Forecasting type-specific seasonal influenza after 26 weeks in the United States using influenza activities in other countries," PLOS ONE, Public Library of Science, vol. 14(11), pages 1-15, November.
- van der Wielen, Wouter & Barrios, Salvador, 2021.
"Economic sentiment during the COVID pandemic: Evidence from search behaviour in the EU,"
Journal of Economics and Business, Elsevier, vol. 115(C).
- VAN DER WIELEN Wouter & BARRIOS Salvador, 2020. "Fear and Employment During the COVID Pandemic: Evidence from Search Behaviour in the EU," JRC Working Papers on Taxation & Structural Reforms 2020-08, Joint Research Centre.
- David H Chae & Sean Clouston & Mark L Hatzenbuehler & Michael R Kramer & Hannah L F Cooper & Sacoby M Wilson & Seth I Stephens-Davidowitz & Robert S Gold & Bruce G Link, 2015. "Association between an Internet-Based Measure of Area Racism and Black Mortality," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-12, April.
- Xiaoli Wang & Shuangsheng Wu & C Raina MacIntyre & Hongbin Zhang & Weixian Shi & Xiaomin Peng & Wei Duan & Peng Yang & Yi Zhang & Quanyi Wang, 2015. "Using an Adjusted Serfling Regression Model to Improve the Early Warning at the Arrival of Peak Timing of Influenza in Beijing," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-14, March.
- Ishani Chaudhuri & Parthajit Kayal, 2022. "Predicting Power of Ticker Search Volume in Indian Stock Market," Working Papers 2022-214, Madras School of Economics,Chennai,India.
- Yang, Xin & Pan, Bing & Evans, James A. & Lv, Benfu, 2015. "Forecasting Chinese tourist volume with search engine data," Tourism Management, Elsevier, vol. 46(C), pages 386-397.
- Kuchler, Theresa & Russel, Dominic & Stroebel, Johannes, 2022. "JUE Insight: The geographic spread of COVID-19 correlates with the structure of social networks as measured by Facebook," Journal of Urban Economics, Elsevier, vol. 127(C).
- Markowitz, Sara & Nesson, Erik & Robinson, Joshua J., 2019.
"The effects of employment on influenza rates,"
Economics & Human Biology, Elsevier, vol. 34(C), pages 286-295.
- Sara Markowitz & Erik Nesson & Joshua Robinson, 2010. "The Effects of Employment on Influenza Rates," NBER Working Papers 15796, National Bureau of Economic Research, Inc.
- Bentzen, Jeanet Sinding, 2021.
"In crisis, we pray: Religiosity and the COVID-19 pandemic,"
Journal of Economic Behavior & Organization, Elsevier, vol. 192(C), pages 541-583.
- Bentzen, Jeanet, 2020. "In Crisis, We Pray: Religiosity and the COVID-19 Pandemic," CEPR Discussion Papers 14824, C.E.P.R. Discussion Papers.
- Jesse T. Richman & Ryan J. Roberts, 2023. "Assessing Spurious Correlations in Big Search Data," Forecasting, MDPI, vol. 5(1), pages 1-12, February.
- Linus Schiöler & Marianne Fris�n, 2012.
"Multivariate outbreak detection,"
Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(2), pages 223-242, April.
- Schiöler, Linus & Frisén, Marianne, 2010. "Multivariate outbreak detection," Research Reports 2010:2, University of Gothenburg, Statistical Research Unit, School of Business, Economics and Law.
- Sasikiran Kandula & Jeffrey Shaman, 2019. "Reappraising the utility of Google Flu Trends," PLOS Computational Biology, Public Library of Science, vol. 15(8), pages 1-16, August.
- Daniel E. O'Leary, 2024. "Toward an extended framework of exhaust data for predictive analytics: An empirical approach," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 31(2), June.
- Yangkun Huang & Xiaoping Xu & Sini Su, 2021. "Diverging from News Media: An Exploratory Study on the Changing Dynamics between Media and Public Attention on Cancer in China from 2011–2020," IJERPH, MDPI, vol. 18(16), pages 1-13, August.
- Vosen, Simeon & Schmidt, Torsten, 2012.
"A monthly consumption indicator for Germany based on Internet search query data,"
EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 19(7), pages 683-687.
- Simeon Vosen & Torsten Schmidt, 2012. "A monthly consumption indicator for Germany based on Internet search query data," Applied Economics Letters, Taylor & Francis Journals, vol. 19(7), pages 683-687, May.
- Schmidt, Torsten & Vosen, Simeon, 2010. "A monthly consumption indicator for Germany based on internet search query data," Ruhr Economic Papers 208, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
- Klaus Ackermann & Simon D Angus & Paul A Raschky, 2017. "The Internet as Quantitative Social Science Platform: Insights from a Trillion Observations," Papers 1701.05632, arXiv.org.
- Edward L. Glaeser & Scott Duke Kominers & Michael Luca & Nikhil Naik, 2018.
"Big Data And Big Cities: The Promises And Limitations Of Improved Measures Of Urban Life,"
Economic Inquiry, Western Economic Association International, vol. 56(1), pages 114-137, January.
- Edward L. Glaeser & Scott Duke Kominers & Michael Luca & Nikhil Naik, 2015. "Big Data and Big Cities: The Promises and Limitations of Improved Measures of Urban Life," NBER Working Papers 21778, National Bureau of Economic Research, Inc.
- Edward L. Glaeser & Scott Duke Kominers & Michael Luca & Nikhil Naik, 2015. "Big Data and Big Cities: The Promises and Limitations of Improved Measures of Urban Life," Harvard Business School Working Papers 16-065, Harvard Business School.
- Glaeser, Edward L. & Kominers, Scott Duke & Luca, Michael & Naik, Nikhil, 2015. "Big Data and Big Cities: The Promises and Limitations of Improved Measures for Urban Life," Working Paper Series 15-075, Harvard University, John F. Kennedy School of Government.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:ijhplm:v:37:y:2022:i:1:p:281-300. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0749-6753 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.