IDEAS home Printed from https://ideas.repec.org/a/eee/jmacro/v62y2019ics0164070419300758.html
   My bibliography  Save this article

Forecasting recessions with time-varying models

Author

Listed:
  • Hwang, Youngjin

Abstract

This study presents a flexible recession forecast model where predictive variables and model coefficients can vary over time. In an application to US recession forecasting using pseudo real-time data, we find that time-varying logit models lead to large improvements in forecast performance, beating the individual best predictors as well as other popular alternative methods. Through these results, we also demonstrate the following features of the forecast models: (i) substituting roles between the two key features of predictor switching and coefficient change, (ii) considerable variations in the model size (i.e., the number of predictors used) over time, and (iii) substantial changes in the role/importance of major individual predictors over business cycles.

Suggested Citation

  • Hwang, Youngjin, 2019. "Forecasting recessions with time-varying models," Journal of Macroeconomics, Elsevier, vol. 62(C).
  • Handle: RePEc:eee:jmacro:v:62:y:2019:i:c:s0164070419300758
    DOI: 10.1016/j.jmacro.2019.103153
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0164070419300758
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmacro.2019.103153?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Christiansen, Charlotte & Eriksen, Jonas Nygaard & Møller, Stig Vinther, 2014. "Forecasting US recessions: The role of sentiment," Journal of Banking & Finance, Elsevier, vol. 49(C), pages 459-468.
    2. Faberman, R. Jason, 2017. "Job flows, jobless recoveries, and the Great Moderation," Journal of Economic Dynamics and Control, Elsevier, vol. 76(C), pages 152-170.
    3. Jens H. E. Christensen & Glenn D. Rudebusch, 2016. "Modeling Yields at the Zero Lower Bound: Are Shadow Rates the Solution?," Advances in Econometrics, in: Dynamic Factor Models, volume 35, pages 75-125, Emerald Group Publishing Limited.
    4. Arturo Estrella & Frederic S. Mishkin, 1998. "Predicting U.S. Recessions: Financial Variables As Leading Indicators," The Review of Economics and Statistics, MIT Press, vol. 80(1), pages 45-61, February.
    5. Shigeru Fujita & Garey Ramey, 2006. "The cyclicality of job loss and hiring," Working Papers 06-17, Federal Reserve Bank of Philadelphia.
    6. Harri Ponka, 2017. "The Role of Credit in Predicting US Recessions," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 36(5), pages 469-482, August.
    7. Serena Ng & Jonathan H. Wright, 2013. "Facts and Challenges from the Great Recession for Forecasting and Macroeconomic Modeling," Journal of Economic Literature, American Economic Association, vol. 51(4), pages 1120-1154, December.
    8. Arturo Estrella & Anthony P. Rodrigues & Sebastian Schich, 2003. "How Stable is the Predictive Power of the Yield Curve? Evidence from Germany and the United States," The Review of Economics and Statistics, MIT Press, vol. 85(3), pages 629-644, August.
    9. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    10. Steven J. Davis & R. Jason Faberman & John Haltiwanger & Ron Jarmin & Javier Miranda, 2010. "Business Volatility, Job Destruction, and Unemployment," American Economic Journal: Macroeconomics, American Economic Association, vol. 2(2), pages 259-287, April.
    11. Henri Nyberg, 2010. "Dynamic probit models and financial variables in recession forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(1-2), pages 215-230.
    12. Liu, Weiling & Moench, Emanuel, 2016. "What predicts US recessions?," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1138-1150.
    13. Rudebusch, Glenn D. & Williams, John C., 2009. "Forecasting Recessions: The Puzzle of the Enduring Power of the Yield Curve," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 492-503.
    14. Estrella, Arturo & Hardouvelis, Gikas A, 1991. "The Term Structure as a Predictor of Real Economic Activity," Journal of Finance, American Finance Association, vol. 46(2), pages 555-576, June.
    15. Döpke, Jörg & Fritsche, Ulrich & Pierdzioch, Christian, 2017. "Predicting recessions with boosted regression trees," International Journal of Forecasting, Elsevier, vol. 33(4), pages 745-759.
    16. Koop, Gary & Korobilis, Dimitris, 2013. "Large time-varying parameter VARs," Journal of Econometrics, Elsevier, vol. 177(2), pages 185-198.
    17. Chauvet, Marcelle & Piger, Jeremy, 2008. "A Comparison of the Real-Time Performance of Business Cycle Dating Methods," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 42-49, January.
    18. Travis J. Berge, 2015. "Predicting Recessions with Leading Indicators: Model Averaging and Selection over the Business Cycle," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 34(6), pages 455-471, September.
    19. Chauvet, Marcelle & Potter, Simon, 2002. "Predicting a recession: evidence from the yield curve in the presence of structural breaks," Economics Letters, Elsevier, vol. 77(2), pages 245-253, October.
    20. Lahiri, Kajal & Yang, Liu, 2013. "Forecasting Binary Outcomes," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1025-1106, Elsevier.
    21. Joseph P. Byrne & Dimitris Korobilis & Pinho J. Ribeiro, 2018. "On The Sources Of Uncertainty In Exchange Rate Predictability," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 59(1), pages 329-357, February.
    22. Marcelle Chauvet & Simon Potter, 2005. "Forecasting recessions using the yield curve," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 24(2), pages 77-103.
    23. Bork, Lasse & Møller, Stig V., 2015. "Forecasting house prices in the 50 states using Dynamic Model Averaging and Dynamic Model Selection," International Journal of Forecasting, Elsevier, vol. 31(1), pages 63-78.
    24. Dangl, Thomas & Halling, Michael, 2012. "Predictive regressions with time-varying coefficients," Journal of Financial Economics, Elsevier, vol. 106(1), pages 157-181.
    25. Koop, Gary, 2014. "Forecasting with dimension switching VARs," International Journal of Forecasting, Elsevier, vol. 30(2), pages 280-290.
    26. Manela, Asaf & Moreira, Alan, 2017. "News implied volatility and disaster concerns," Journal of Financial Economics, Elsevier, vol. 123(1), pages 137-162.
    27. Ng, Eric C.Y., 2012. "Forecasting US recessions with various risk factors and dynamic probit models," Journal of Macroeconomics, Elsevier, vol. 34(1), pages 112-125.
    28. Travis J. Berge & Òscar Jordà, 2011. "Evaluating the Classification of Economic Activity into Recessions and Expansions," American Economic Journal: Macroeconomics, American Economic Association, vol. 3(2), pages 246-277, April.
    29. Giusto, Andrea & Piger, Jeremy, 2017. "Identifying business cycle turning points in real time with vector quantization," International Journal of Forecasting, Elsevier, vol. 33(1), pages 174-184.
    30. Karnizova, Lilia & Li, Jiaxiong (Chris), 2014. "Economic policy uncertainty, financial markets and probability of US recessions," Economics Letters, Elsevier, vol. 125(2), pages 261-265.
    31. Tyler H. McCormick & Adrian E. Raftery & David Madigan & Randall S. Burd, 2012. "Dynamic Logistic Regression and Dynamic Model Averaging for Binary Classification," Biometrics, The International Biometric Society, vol. 68(1), pages 23-30, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hasse, Jean-Baptiste & Lajaunie, Quentin, 2022. "Does the yield curve signal recessions? New evidence from an international panel data analysis," The Quarterly Review of Economics and Finance, Elsevier, vol. 84(C), pages 9-22.
    2. Kajal Lahiri & Cheng Yang, 2023. "A tale of two recession-derivative indicators," Empirical Economics, Springer, vol. 65(2), pages 925-947, August.
    3. Glocker, Christian & Kaniovski, Serguei, 2020. "Structural modeling and forecasting using a cluster of dynamic factor models," MPRA Paper 101874, University Library of Munich, Germany.
    4. Massimo Ferrari Minesso & Laura Lebastard & Helena Mezo, 2023. "Text-Based Recession Probabilities," IMF Economic Review, Palgrave Macmillan;International Monetary Fund, vol. 71(2), pages 415-438, June.
    5. Okimoto, Tatsuyoshi & Takaoka, Sumiko, 2022. "The credit spread curve distribution and economic fluctuations in Japan," Journal of International Money and Finance, Elsevier, vol. 122(C).
    6. Xing, Kai & Luo, Dan & Liu, Lanlan, 2023. "Macroeconomic conditions, corporate default, and default clustering," Economic Modelling, Elsevier, vol. 118(C).
    7. Seulki Chung, 2023. "Real-time Prediction of the Great Recession and the Covid-19 Recession," Papers 2310.08536, arXiv.org, revised Mar 2024.
    8. Zihao Wang & Kun Li & Steve Q. Xia & Hongfu Liu, 2021. "Economic Recession Prediction Using Deep Neural Network," Papers 2107.10980, arXiv.org.
    9. Borio, Claudio & Drehmann, Mathias & Xia, Fan Dora, 2020. "Forecasting recessions: the importance of the financial cycle," Journal of Macroeconomics, Elsevier, vol. 66(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hasse, Jean-Baptiste & Lajaunie, Quentin, 2022. "Does the yield curve signal recessions? New evidence from an international panel data analysis," The Quarterly Review of Economics and Finance, Elsevier, vol. 84(C), pages 9-22.
    2. Pierdzioch Christian & Gupta Rangan, 2020. "Uncertainty and Forecasts of U.S. Recessions," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 24(4), pages 1-20, September.
    3. Jean-Baptiste Hasse & Quentin Lajaunie, 2020. "Does the Yield Curve Signal Recessions? New Evidence from an International Panel Data Analysis," AMSE Working Papers 2013, Aix-Marseille School of Economics, France.
    4. Nissilä, Wilma, 2020. "Probit based time series models in recession forecasting – A survey with an empirical illustration for Finland," BoF Economics Review 7/2020, Bank of Finland.
    5. Christiansen, Charlotte & Eriksen, Jonas N. & Møller, Stig V., 2019. "Negative house price co-movements and US recessions," Regional Science and Urban Economics, Elsevier, vol. 77(C), pages 382-394.
    6. Vrontos, Spyridon D. & Galakis, John & Vrontos, Ioannis D., 2021. "Modeling and predicting U.S. recessions using machine learning techniques," International Journal of Forecasting, Elsevier, vol. 37(2), pages 647-671.
    7. Davig, Troy & Hall, Aaron Smalter, 2019. "Recession forecasting using Bayesian classification," International Journal of Forecasting, Elsevier, vol. 35(3), pages 848-867.
    8. Borio, Claudio & Drehmann, Mathias & Xia, Fan Dora, 2020. "Forecasting recessions: the importance of the financial cycle," Journal of Macroeconomics, Elsevier, vol. 66(C).
    9. Vasilios Plakandaras & Juncal Cunado & Rangan Gupta & Mark E. Wohar, 2016. "Do Leading Indicators Forecast U.S. Recessions? A Nonlinear Re-Evaluation Using Historical Data," Working Papers 201685, University of Pretoria, Department of Economics.
    10. Harri Pönkä & Markku Stenborg, 2020. "Forecasting the state of the Finnish business cycle," Finnish Economic Papers, Finnish Economic Association, vol. 29(1), pages 81-99, Spring.
    11. , & Stein, Tobias, 2021. "Equity premium predictability over the business cycle," CEPR Discussion Papers 16357, C.E.P.R. Discussion Papers.
    12. Döpke, Jörg & Fritsche, Ulrich & Pierdzioch, Christian, 2017. "Predicting recessions with boosted regression trees," International Journal of Forecasting, Elsevier, vol. 33(4), pages 745-759.
    13. Christiansen, Charlotte & Eriksen, Jonas Nygaard & Møller, Stig Vinther, 2014. "Forecasting US recessions: The role of sentiment," Journal of Banking & Finance, Elsevier, vol. 49(C), pages 459-468.
    14. Rachidi Kotchoni & Dalibor Stevanovic, 2016. "Forecasting U.S. Recessions and Economic Activity," Working Papers hal-04141569, HAL.
    15. Zihao Wang & Kun Li & Steve Q. Xia & Hongfu Liu, 2021. "Economic Recession Prediction Using Deep Neural Network," Papers 2107.10980, arXiv.org.
    16. Rachidi Kotchoni & Dalibor Stevanovic, 2020. "GDP Forecast Accuracy During Recessions," Working Papers 20-06, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management.
    17. Aastveit, Knut Are & Anundsen, André K. & Herstad, Eyo I., 2019. "Residential investment and recession predictability," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1790-1799.
    18. Sun, Jiandong & Feng, Shuaizhang & Hu, Yingyao, 2021. "Misclassification errors in labor force statuses and the early identification of economic recessions," Journal of Asian Economics, Elsevier, vol. 75(C).
    19. Liu, Weiling & Moench, Emanuel, 2016. "What predicts US recessions?," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1138-1150.
    20. Lauri Nevasalmi, 2022. "Recession forecasting with high‐dimensional data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(4), pages 752-764, July.

    More about this item

    Keywords

    Recession forecasting; Real-time data; Dynamic model averaging/selection; Time-varying coefficients;
    All these keywords.

    JEL classification:

    • C35 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmacro:v:62:y:2019:i:c:s0164070419300758. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/622617 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.