IDEAS home Printed from https://ideas.repec.org/p/cnb/wpaper/2021-3.html
   My bibliography  Save this paper

Holding the Economy by the Tail: Analysis of Short- and Long-run Macroeconomic Risks

Author

Listed:
  • Michal Franta
  • Jan Libich

Abstract

We put forward a novel macro-financial empirical modelling framework that can examine the tails of distributions of macroeconomic variables and the implied risks. It does so without quantile regression, also allowing for non-normal distributions. Besides methodological innovations, the framework offers a number of relevant insights into the effects of monetary and macroprudential policy on downside macroeconomic risk. This is both from the short-run perspective and from the long-run perspective, which has been remained unexamined in the existing Macro-at-Risk literature. In particular, we estimate the conditional and unconditional US output growth distribution and investigate the evolution of its first four moments. The short-run analysis finds that monetary policy and financial shocks render the conditional output growth distribution asymmetric, and affect downside risk over and above their impact on the conditional mean that policymakers routinely focus on. The long-run analysis indicates, among other things, that US output growth left-tail risk showed a general downward trend in the two decades preceding the Global Financial Crisis, but has started rising in recent years. Our examination strongly points to post-2008 unconventional monetary policies (quantitative easing) as a potential source of elevated long-run downside tail risk.

Suggested Citation

  • Michal Franta & Jan Libich, 2021. "Holding the Economy by the Tail: Analysis of Short- and Long-run Macroeconomic Risks," Working Papers 2021/3, Czech National Bank.
  • Handle: RePEc:cnb:wpaper:2021/3
    as

    Download full text from publisher

    File URL: https://www.cnb.cz/export/sites/cnb/en/economic-research/.galleries/research_publications/cnb_wp/cnbwp_2021_03.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Christina D. Romer & David H. Romer, 2004. "A New Measure of Monetary Shocks: Derivation and Implications," American Economic Review, American Economic Association, vol. 94(4), pages 1055-1084, September.
    2. Stephen G. Cecchetti, 2008. "Measuring the Macroeconomic Risks Posed by Asset Price Booms," NBER Chapters, in: Asset Prices and Monetary Policy, pages 9-43, National Bureau of Economic Research, Inc.
    3. Giorgio Fagiolo & Mauro Napoletano & Andrea Roventini, 2008. "Are output growth-rate distributions fat-tailed? some evidence from OECD countries," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(5), pages 639-669.
    4. Claudio Borio & Mathias Drehmann & Dora Xia Author-X-Name_First: Dora, 2019. "Predicting recessions: financial cycle versus term spread," BIS Working Papers 818, Bank for International Settlements.
    5. Franta, Michal & Gambacorta, Leonardo, 2020. "On the effects of macroprudential policies on Growth-at-Risk," Economics Letters, Elsevier, vol. 196(C).
    6. Cogley, Timothy & Morozov, Sergei & Sargent, Thomas J., 2005. "Bayesian fan charts for U.K. inflation: Forecasting and sources of uncertainty in an evolving monetary system," Journal of Economic Dynamics and Control, Elsevier, vol. 29(11), pages 1893-1925, November.
    7. James H. Stock & Mark W. Watson, 2003. "Has the Business Cycle Changed and Why?," NBER Chapters, in: NBER Macroeconomics Annual 2002, Volume 17, pages 159-230, National Bureau of Economic Research, Inc.
    8. Oscar Jorda & Alan Taylor & Sanjay Singh, 2019. "The Long-Run Effects of Monetary Policy," 2019 Meeting Papers 1307, Society for Economic Dynamics.
    9. Holston, Kathryn & Laubach, Thomas & Williams, John C., 2017. "Measuring the natural rate of interest: International trends and determinants," Journal of International Economics, Elsevier, vol. 108(S1), pages 59-75.
    10. Eguren-Martin, Fernando & O'Neill, Cian & Sokol, Andrej & von dem Berge, Lukas, 2024. "Capital flows-at-risk: Push, pull and the role of policy," Journal of International Money and Finance, Elsevier, vol. 147(C).
    11. Davide Delle Monache & Andrea De Polis & Ivan Petrella, 2024. "Modeling and Forecasting Macroeconomic Downside Risk," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(3), pages 1010-1025, July.
    12. Lutz Kilian & Simone Manganelli, 2008. "The Central Banker as a Risk Manager: Estimating the Federal Reserve's Preferences under Greenspan," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 40(6), pages 1103-1129, September.
    13. Geweke, John & Keane, Michael, 2007. "Smoothly mixing regressions," Journal of Econometrics, Elsevier, vol. 138(1), pages 252-290, May.
    14. Francesco Bianchi, 2013. "Regime Switches, Agents' Beliefs, and Post-World War II U.S. Macroeconomic Dynamics," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 80(2), pages 463-490.
    15. Lucia Alessi & Eric Ghysels & Luca Onorante & Richard Peach & Simon Potter, 2014. "Central Bank Macroeconomic Forecasting During the Global Financial Crisis: The European Central Bank and Federal Reserve Bank of New York Experiences," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(4), pages 483-500, October.
    16. James Morley & Jeremy Piger, 2012. "The Asymmetric Business Cycle," The Review of Economics and Statistics, MIT Press, vol. 94(1), pages 208-221, February.
    17. Mark Gertler & Peter Karadi, 2015. "Monetary Policy Surprises, Credit Costs, and Economic Activity," American Economic Journal: Macroeconomics, American Economic Association, vol. 7(1), pages 44-76, January.
    18. Giovanni Favara & Simon Gilchrist & Kurt F. Lewis & Egon Zakrajšek, 2016. "Updating the Recession Risk and the Excess Bond Premium," FEDS Notes 2016-10-06, Board of Governors of the Federal Reserve System (U.S.).
    19. Francesca Loria & Christian Matthes & Donghai Zhang, 2019. "Assessing Macroeconomic Tail Risk," Working Paper 19-10, Federal Reserve Bank of Richmond.
    20. Mikkel Plagborg‐Møller & Christian K. Wolf, 2021. "Local Projections and VARs Estimate the Same Impulse Responses," Econometrica, Econometric Society, vol. 89(2), pages 955-980, March.
    21. Philip Liu & Konstantinos Theodoridis & Haroon Mumtaz & Francesco Zanetti, 2019. "Changing Macroeconomic Dynamics at the Zero Lower Bound," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(3), pages 391-404, July.
    22. Juan Antolin-Diaz & Thomas Drechsel & Ivan Petrella, 2017. "Tracking the Slowdown in Long-Run GDP Growth," The Review of Economics and Statistics, MIT Press, vol. 99(2), pages 343-356, May.
    23. Arturo Estrella & Mary R. Trubin, 2006. "The yield curve as a leading indicator: some practical issues," Current Issues in Economics and Finance, Federal Reserve Bank of New York, vol. 12(Jul).
    24. Christiane Baumeister & Luca Benati, 2013. "Unconventional Monetary Policy and the Great Recession: Estimating the Macroeconomic Effects of a Spread Compression at the Zero Lower Bound," International Journal of Central Banking, International Journal of Central Banking, vol. 9(2), pages 165-212, June.
    25. Simon Gilchrist & Egon Zakrajsek, 2012. "Credit Spreads and Business Cycle Fluctuations," American Economic Review, American Economic Association, vol. 102(4), pages 1692-1720, June.
    26. Johannes F. Wieland & Mu‐Jeung Yang, 2020. "Financial Dampening," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 52(1), pages 79-113, February.
    27. Ryan Niladri Banerjee & Juan Contreras & Aaron Mehrotra & Fabrizio Zampolli, 2020. "Inflation at risk in advanced and emerging economies," BIS Working Papers 883, Bank for International Settlements.
    28. Nathan S. Balke, 2000. "Credit and Economic Activity: Credit Regimes and Nonlinear Propagation of Shocks," The Review of Economics and Statistics, MIT Press, vol. 82(2), pages 344-349, May.
    29. Thibaut Duprey & Alexander Ueberfeldt, 2020. "Managing GDP Tail Risk," Staff Working Papers 20-3, Bank of Canada.
    30. Mattias Villani, 2009. "Steady-state priors for vector autoregressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(4), pages 630-650.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Firmin Doko Tchatoka & Qazi Haque, 2024. "Revisiting the Macroeconomic Effects of Monetary Policy Shocks," The Economic Record, The Economic Society of Australia, vol. 100(329), pages 234-259, June.
    2. Boeck, Maximilian & Feldkircher, Martin, 2021. "The Impact of Monetary Policy on Yield Curve Expectations," Journal of Economic Behavior & Organization, Elsevier, vol. 191(C), pages 887-901.
    3. Ferreira, Leonardo N., 2022. "Forward guidance matters: Disentangling monetary policy shocks," Journal of Macroeconomics, Elsevier, vol. 73(C).
    4. Thore Schlaak & Malte Rieth & Maximilian Podstawski, 2023. "Monetary policy, external instruments, and heteroskedasticity," Quantitative Economics, Econometric Society, vol. 14(1), pages 161-200, January.
    5. Stijn Claessens & M Ayhan Kose, 2017. "Asset prices and macroeconomic outcomes: a survey," BIS Working Papers 676, Bank for International Settlements.
    6. Lhuissier Stéphane & Nguyen Benoît, 2021. "The Dynamic Effects of the ECB’s Asset Purchases: a Survey-Based Identification," Working papers 806, Banque de France.
    7. Stijn Claessens & M Ayhan Kose, 2018. "Frontiers of macrofinancial linkages," BIS Papers, Bank for International Settlements, number 95.
    8. Martin Bruns & Michele Piffer, 2021. "Monetary policy shocks over the business cycle: Extending the Smooth Transition framework," University of East Anglia School of Economics Working Paper Series 2021-07, School of Economics, University of East Anglia, Norwich, UK..
    9. De Santis, Roberto A. & Tornese, Tommaso, 2024. "US monetary policy is more powerful in low economic growth regimes," Working Paper Series 2919, European Central Bank.
    10. Bu, Chunya & Rogers, John & Wu, Wenbin, 2021. "A unified measure of Fed monetary policy shocks," Journal of Monetary Economics, Elsevier, vol. 118(C), pages 331-349.
    11. Magnus Reif, 2020. "Macroeconomics, Nonlinearities, and the Business Cycle," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 87.
    12. Breitenlechner, Max & Geiger, Martin & Scharler, Johann, 2022. "Bank liquidity and the propagation of uncertainty in the U.S," Finance Research Letters, Elsevier, vol. 46(PB).
    13. Garga, Vaishali & Singh, Sanjay R., 2021. "Output hysteresis and optimal monetary policy," Journal of Monetary Economics, Elsevier, vol. 117(C), pages 871-886.
    14. Andrejs Zlobins, 2021. "On the Time-varying Effects of the ECB's Asset Purchases," Working Papers 2021/02, Latvijas Banka.
    15. Beqiraj, Elton & Cao, Qingqing & Minetti, Raoul & Tarquini, Giulio, 2023. "Persistent Slumps: Innovation and the Credit Channel of Monetary Policy," Working Papers 2023-3, Michigan State University, Department of Economics.
    16. Gloria Gonzalez-Rivera & Vladimir Rodriguez-Caballero & Esther Ruiz, 2021. "Expecting the unexpected: economic growth under stress," Working Papers 202106, University of California at Riverside, Department of Economics.
    17. Iseringhausen, Martin, 2024. "A time-varying skewness model for Growth-at-Risk," International Journal of Forecasting, Elsevier, vol. 40(1), pages 229-246.
    18. Francesco Furlanetto & Ørjan Robstad & Pål Ulvedal & Antoine Lepetit, 2020. "Estimating hysteresis effects," Working Paper 2020/13, Norges Bank.
    19. Ramey, V.A., 2016. "Macroeconomic Shocks and Their Propagation," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 71-162, Elsevier.

    More about this item

    Keywords

    Downside tail risk; growth-at-risk; macroeconomic policy; macro-financial modeling; non-normal distribution; threshold VAR; US output growth;
    All these keywords.

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C54 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Quantitative Policy Modeling
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cnb:wpaper:2021/3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Jan Babecky (email available below). General contact details of provider: https://edirc.repec.org/data/cnbgvcz.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.