IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Dynamic Factor Models in Forecasting Latvia's Gross Domestic Product

  • Viktors Ajevskis

    (Bank of Latvia)

  • Gundars Davidsons

    (Bank of Latvia)

The study aims at evaluating how useful the application of models using large panels of data in forecasting Latvia's GDP is. Two factor models have been used: the Stock-Watson factor model and the generalised dynamic factor model. The forecast findings by the two models have been compared with the results obtained by the benchmark autoregressive model. The results suggest that compared with simpler autoregressive models both the Stock-Watson factor model and the generalised dynamic factor model ensure forecast improvement, which, however, has not been statistically significant if statistical tests are used.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: https://www.bank.lv/public_files/images/img_lb/izdevumi/english/citas/wp_2008-2_ajevskis-davidsons.pdf
Download Restriction: no

File URL: https://www.macroeconomics.lv/sites/default/files/wp_2008-2_ajevskis-davidsons.pdf
Download Restriction: no

Paper provided by Latvijas Banka in its series Working Papers with number 2008/02.

as
in new window

Length:
Date of creation: 29 Apr 2008
Date of revision:
Handle: RePEc:ltv:wpaper:200802
Contact details of provider: Postal: K. Valdemara iela 2a, LV-1050 Riga
Phone: +371 702 2300
Fax: +371 702 2420
Web page: https://www.bank.lv/
Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Matheson, Troy D, 2006. "Factor Model Forecasts for New Zealand," MPRA Paper 807, University Library of Munich, Germany.
  2. Connor, Gregory & Korajczyk, Robert A., 1986. "Performance measurement with the arbitrage pricing theory : A new framework for analysis," Journal of Financial Economics, Elsevier, vol. 15(3), pages 373-394, March.
  3. Breitung, Jörg & Eickmeier, Sandra, 2005. "Dynamic factor models," Discussion Paper Series 1: Economic Studies 2005,38, Deutsche Bundesbank, Research Centre.
  4. Ard H.J. den Reijer, 2005. "Forecasting Dutch GDP using Large Scale Factor Models," DNB Working Papers 028, Netherlands Central Bank, Research Department.
  5. Michael Artis & Anindya Banerjee & Massimiliano Marcellino, . "Factor forecasts for the UK," Working Papers 203, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
  6. Forni M. & Hallin M., 2003. "The Generalized Dynamic Factor Model: One-Sided Estimation and Forecasting," Computing in Economics and Finance 2003 143, Society for Computational Economics.
  7. Francis X. Diebold & Robert S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
  8. William T. Gavin & Kevin L. Kliesen, 2006. "Forecasting inflation and output: comparing data-rich models with simple rules," Working Papers 2006-054, Federal Reserve Bank of St. Louis.
  9. D'Agostino, Antonello & Giannone, Domenico, 2007. "Comparing Alternative Predictors Based on Large-Panel Factor Models," CEPR Discussion Papers 6564, C.E.P.R. Discussion Papers.
  10. Boivin, Jean & Ng, Serena, 2006. "Are more data always better for factor analysis?," Journal of Econometrics, Elsevier, vol. 132(1), pages 169-194, May.
  11. Christian Schumacher & Christian Dreger, 2004. "Estimating Large-Scale Factor Models for Economic Activity in Germany: Do They Outperform Simpler Models?," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), Justus-Liebig University Giessen, Department of Statistics and Economics, vol. 224(6), pages 731-750, November.
  12. James H. Stock & Mark W. Watson, 1998. "Diffusion Indexes," NBER Working Papers 6702, National Bureau of Economic Research, Inc.
  13. Chamberlain, Gary & Rothschild, Michael, 1983. "Arbitrage, Factor Structure, and Mean-Variance Analysis on Large Asset Markets," Econometrica, Econometric Society, vol. 51(5), pages 1281-304, September.
  14. Marcellino, Massimiliano & Stock, James H. & Watson, Mark W., 2003. "Macroeconomic forecasting in the Euro area: Country specific versus area-wide information," European Economic Review, Elsevier, vol. 47(1), pages 1-18, February.
  15. Banerjee, Anindya & Marcellino, Massimiliano & Masten, Igor, 2005. "Forecasting macroeconomic variables for the new member states of the European Union," Working Paper Series 0482, European Central Bank.
  16. Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2000. "The Generalized Dynamic-Factor Model: Identification And Estimation," The Review of Economics and Statistics, MIT Press, vol. 82(4), pages 540-554, November.
  17. Schumacher, Christian, 2005. "Forecasting German GDP using alternative factor models based on large datasets," Discussion Paper Series 1: Economic Studies 2005,24, Deutsche Bundesbank, Research Centre.
  18. Martin Schneider & Martin Spitzer, 2004. "Forecasting Austrian GDP using the generalized dynamic factor model," Working Papers 89, Oesterreichische Nationalbank (Austrian Central Bank).
  19. Calista Cheung & Frédérick Demers, 2007. "Evaluating Forecasts from Factor Models for Canadian GDP Growth and Core Inflation," Working Papers 07-8, Bank of Canada.
  20. Christophe Van Nieuwenhuyze, 2006. "A generalised dynamic factor model for the Belgian economy - Useful business cycle indicators and GDP growth forecasts," Working Paper Research 80, National Bank of Belgium.
  21. Bernanke, Ben S. & Boivin, Jean, 2003. "Monetary policy in a data-rich environment," Journal of Monetary Economics, Elsevier, vol. 50(3), pages 525-546, April.
  22. Christian Gillitzer & Jonathan Kearns, 2007. "Forecasting with Factors: The Accuracy of Timeliness," RBA Research Discussion Papers rdp2007-03, Reserve Bank of Australia.
  23. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-62, April.
  24. Camba-Méndez, Gonzalo & Kapetanios, George, 2004. "Forecasting euro area inflation using dynamic factor measures of underlying inflation," Working Paper Series 0402, European Central Bank.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:ltv:wpaper:200802. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Konstantins Benkovskis)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.