IDEAS home Printed from
   My bibliography  Save this paper

An Unobserved Components Model to Forecast Austrian GDP



This paper deals with forecasting quarterly Austrian GDP growth using monthly conjunctural indicators and state space models. The latter provide an efficient econometric framework to analyse jointly data with different frequencies. Based on a Kalman filter technique we estimate a monthly GDP growth series as an unobserved component using monthly conjunctural indicators as explanatory variables. From a large data set of more than 150 monthly indicators the following six explanatory variables were selected on the basis of their in-sample fit and out of sample forecast performance: the ifo-index, credit growth, vacancies, the real exchange rate, the number of employees and new car registrations. Subsequently, quarterly GDP figures are derived from the monthly unobserved component using a weighted aggregation scheme. Several tests for forecasting accuracy and forecasting encompassing indicate that the unobserved components model (UOC-model) is able to outperform simple ARIMA and Naïve models.

Suggested Citation

  • Gerhard Fenz & Martin Spitzer, 2006. "An Unobserved Components Model to Forecast Austrian GDP," Working Papers 119, Oesterreichische Nationalbank (Austrian Central Bank).
  • Handle: RePEc:onb:oenbwp:119

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Martin Schneider & Martin Spitzer, 2004. "Forecasting Austrian GDP using the generalized dynamic factor model," Working Papers 89, Oesterreichische Nationalbank (Austrian Central Bank).
    2. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    3. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Konstantins Benkovskis, 2008. "Short-Term Forecasts of Latvia's Real Gross Domestic Product Growth Using Monthly Indicators," Working Papers 2008/05, Latvijas Banka.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:onb:oenbwp:119. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Markus Knell and Helmut Stix). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.