IDEAS home Printed from https://ideas.repec.org/p/igi/igierp/570.html
   My bibliography  Save this paper

A daily indicator of economic growth for the euro area

Author

Listed:
  • Valentina Aprigliano
  • Claudia Foroni
  • Massimiliano Marcellino
  • Gianluigi Mazzi
  • Fabrizio Venditti

Abstract

In this paper we study alternative methods to construct a daily indicator of growth for the euro area. We aim for an indicator that (i) provides reliable predictions, (ii) can be easily updated at the daily frequency, (iii) gives interpretable signals, and (iv) it is linear. Using a large panel of daily and monthly data for the euro area we explore the performance of two classes of models: bridge and U-MIDAS models, and di¤erent forecast combination strategies. Forecasts obtained from U-MIDAS models, combined with the inverse MSE weights, best satisfy the required criteria. JEL classi cation: C51, C53, E27. Keywords: Nowcasting, mixed-frequency data.

Suggested Citation

  • Valentina Aprigliano & Claudia Foroni & Massimiliano Marcellino & Gianluigi Mazzi & Fabrizio Venditti, 2016. "A daily indicator of economic growth for the euro area," Working Papers 570, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
  • Handle: RePEc:igi:igierp:570
    as

    Download full text from publisher

    File URL: ftp://ftp.igier.unibocconi.it/wp/2016/570.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Marcellino, Massimiliano & Stock, James H. & Watson, Mark W., 2006. "A comparison of direct and iterated multistep AR methods for forecasting macroeconomic time series," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 499-526.
    2. Doz, Catherine & Giannone, Domenico & Reichlin, Lucrezia, 2011. "A two-step estimator for large approximate dynamic factor models based on Kalman filtering," Journal of Econometrics, Elsevier, vol. 164(1), pages 188-205, September.
    3. repec:hal:journl:peer-00844811 is not listed on IDEAS
    4. Bai, Jushan & Ng, Serena, 2008. "Forecasting economic time series using targeted predictors," Journal of Econometrics, Elsevier, vol. 146(2), pages 304-317, October.
    5. Massimiliano Marcellino & Mario Porqueddu & Fabrizio Venditti, 2016. "Short-Term GDP Forecasting With a Mixed-Frequency Dynamic Factor Model With Stochastic Volatility," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(1), pages 118-127, January.
    6. Roberto S. Mariano & Yasutomo Murasawa, 2010. "A Coincident Index, Common Factors, and Monthly Real GDP," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 72(1), pages 27-46, February.
    7. Karim Barhoumi & Olivier Darné & Laurent Ferrara & Bertrand Pluyaud, 2012. "Monthly Gdp Forecasting Using Bridge Models: Application For The French Economy," Bulletin of Economic Research, Wiley Blackwell, vol. 64(Supplemen), pages 53-70, December.
    8. Bulligan, Guido & Marcellino, Massimiliano & Venditti, Fabrizio, 2015. "Forecasting economic activity with targeted predictors," International Journal of Forecasting, Elsevier, vol. 31(1), pages 188-206.
    9. Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2004. "The MIDAS Touch: Mixed Data Sampling Regression Models," University of California at Los Angeles, Anderson Graduate School of Management qt9mf223rs, Anderson Graduate School of Management, UCLA.
    10. Marie Diron, 2008. "Short-term forecasts of euro area real GDP growth: an assessment of real-time performance based on vintage data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(5), pages 371-390.
    11. Diron, Marie, 2006. "Short-term forecasts of euro area real GDP growth: an assessment of real-time performance based on vintage data," Working Paper Series 622, European Central Bank.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stefan Neuwirth, 2017. "Time-varying mixed frequency forecasting: A real-time experiment," KOF Working papers 17-430, KOF Swiss Economic Institute, ETH Zurich.

    More about this item

    JEL classification:

    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E27 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Forecasting and Simulation: Models and Applications

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igi:igierp:570. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: http://www.igier.unibocconi.it/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.