IDEAS home Printed from https://ideas.repec.org/a/bpj/jtsmet/v12y2020i2p41n1.html

A Flexible Mixed-Frequency Vector Autoregression with a Steady-State Prior

Author

Listed:
  • Ankargren Sebastian

    (Department of Statistics, Uppsala University, Uppsala, Sweden)

  • Unosson Måns

    (Department of Statistics, Uppsala University, Uppsala, Sweden)

  • Yang Yukai

    (Department of Statistics, Uppsala University, Uppsala, Sweden)

Abstract

We propose a Bayesian vector autoregressive (VAR) model for mixed-frequency data. Our model is based on the mean-adjusted parametrization of the VAR and allows for an explicit prior on the “steady states” (unconditional means) of the included variables. Based on recent developments in the literature, we discuss extensions of the model that improve the flexibility of the modeling approach. These extensions include a hierarchical shrinkage prior for the steady-state parameters, and the use of stochastic volatility to model heteroskedasticity. We put the proposed model to use in a forecast evaluation using US data consisting of 10 monthly and three quarterly variables. The results show that the predictive ability typically benefits from using mixed-frequency data, and that improvement can be obtained for both monthly and quarterly variables. We also find that the steady-state prior generally enhances the accuracy of the forecasts, and that accounting for heteroskedasticity by means of stochastic volatility usually provides additional improvements, although not for all variables.

Suggested Citation

  • Ankargren Sebastian & Unosson Måns & Yang Yukai, 2020. "A Flexible Mixed-Frequency Vector Autoregression with a Steady-State Prior," Journal of Time Series Econometrics, De Gruyter, vol. 12(2), pages 1-41, July.
  • Handle: RePEc:bpj:jtsmet:v:12:y:2020:i:2:p:41:n:1
    DOI: 10.1515/jtse-2018-0034
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/jtse-2018-0034
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/jtse-2018-0034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or

    for a different version of it.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Yixiao & Yu, Cindy L. & Li, Haitao, 2022. "Nowcasting GDP Using Dynamic Factor Model with Unknown Number of Factors and Stochastic Volatility: A Bayesian Approach," Econometrics and Statistics, Elsevier, vol. 24(C), pages 75-93.
    2. Lin, Jiahe & Michailidis, George, 2024. "A multi-task encoder-dual-decoder framework for mixed frequency data prediction," International Journal of Forecasting, Elsevier, vol. 40(3), pages 942-957.
    3. Sebastian Ankargren & Paulina Jon'eus, 2019. "Estimating Large Mixed-Frequency Bayesian VAR Models," Papers 1912.02231, arXiv.org.
    4. Ali Batuhan Barlas & Seda Guler Mert & Berk Orkun Isa & Alvaro Ortiz & Tomasa Rodrigo & Baris Soybilgen & Ege Yazgan, 2021. "Turquía | Big Data y Nowcasting: consumo e inversión de transacciones bancarias [Turkey | Big Data and Nowcasting: Consumption and Investment from Bank Transactions]," Working Papers 21/07, BBVA Bank, Economic Research Department.
    5. Yukang Jiang & Xueqin Wang & Zhixi Xiong & Haisheng Yang & Ting Tian, 2022. "Interpreting and predicting the economy flows: A time-varying parameter global vector autoregressive integrated the machine learning model," Papers 2209.05998, arXiv.org.
    6. Boniface Yemba & Yi Duan & Nabaneeta Biswas, 2023. "Government spending news and stock price index," Economics Bulletin, AccessEcon, vol. 43(4), pages 1816-1841.
    7. Yemba, Boniface P. & Otunuga, Olusegun Michael & Tang, Biyan & Biswas, Nabaneeta, 2023. "Nowcasting of the Short-run Euro-Dollar Exchange Rate with Economic Fundamentals and Time-varying Parameters," Finance Research Letters, Elsevier, vol. 52(C).
    8. Ali B. Barlas & Seda Guler Mert & Berk Orkun Isa & Alvaro Ortiz & Tomasa Rodrigo & Baris Soybilgen & Ege Yazgan, 2021. "Big Data Information and Nowcasting: Consumption and Investment from Bank Transactions in Turkey," Papers 2107.03299, arXiv.org.
    9. Ankargren, Sebastian & Jonéus, Paulina, 2021. "Simulation smoothing for nowcasting with large mixed-frequency VARs," Econometrics and Statistics, Elsevier, vol. 19(C), pages 97-113.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:jtsmet:v:12:y:2020:i:2:p:41:n:1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyterbrill.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.