IDEAS home Printed from https://ideas.repec.org/a/wly/japmet/v34y2019i2p247-267.html

Bootstrap inference for impulse response functions in factor‐augmented vector autoregressions

Author

Listed:
  • Yohei Yamamoto

Abstract

In this study, we consider residual‐based bootstrap methods to construct the confidence interval for structural impulse response functions in factor‐augmented vector autoregressions. In particular, we compare the bootstrap with factor estimation (Procedure A) with the bootstrap without factor estimation (Procedure B). Both procedures are asymptotically valid under the condition T/N→0, where N and T are the cross‐sectional dimension and the time dimension, respectively. However, Procedure A is also valid even when T/N→c with 0 ≤ c

Suggested Citation

  • Yohei Yamamoto, 2019. "Bootstrap inference for impulse response functions in factor‐augmented vector autoregressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(2), pages 247-267, March.
  • Handle: RePEc:wly:japmet:v:34:y:2019:i:2:p:247-267
    DOI: 10.1002/jae.2659
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/jae.2659
    Download Restriction: no

    File URL: https://libkey.io/10.1002/jae.2659?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bicu, A.C. & Lieb, L.M., 2015. "Cross-border effects of fiscal policy in the Eurozone," Research Memorandum 019, Maastricht University, Graduate School of Business and Economics (GSBE).
    2. Mototsugu Shintani & Zi-Yi Guo, 2018. "Improving the finite sample performance of autoregression estimators in dynamic factor models: A bootstrap approach," Econometric Reviews, Taylor & Francis Journals, vol. 37(4), pages 360-379, April.
    3. Karaki, Mohamad B. & Rangaraju, Sandeep Kumar, 2023. "The confidence channel of U.S. financial uncertainty: Evidence from industry-level data," Economic Modelling, Elsevier, vol. 129(C).
    4. Zongwu Cai & Xiyuan Liu, 2021. "Solving the Price Puzzle Via A Functional Coefficient Factor-Augmented VAR Model," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202106, University of Kansas, Department of Economics, revised Jan 2021.
    5. Herrera, Ana María & Rangaraju, Sandeep Kumar, 2019. "The quantitative effects of tax foresight: Not all states are equal," Journal of Economic Dynamics and Control, Elsevier, vol. 107(C), pages 1-1.
    6. Martin Bruns, 2019. "Proxy VAR models in a data-rich environment," University of East Anglia School of Economics Working Paper Series 2019-03, School of Economics, University of East Anglia, Norwich, UK..
    7. Yohei Yamamoto & Naoko Hara, 2022. "Identifying factor‐augmented vector autoregression models via changes in shock variances," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(4), pages 722-745, June.
    8. Dominik Bertsche, 2019. "The effects of oil supply shocks on the macroeconomy: a Proxy-FAVAR approachThe effects of oil supply shocks on the macroeconomy: a Proxy-FAVAR approach," Working Paper Series of the Department of Economics, University of Konstanz 2019-06, Department of Economics, University of Konstanz.
    9. Han, Xu, 2025. "Global identification, estimation and inference of structural impulse response functions in factor models: A unified framework," Journal of Econometrics, Elsevier, vol. 251(C).
    10. Herrera, Ana María & Karaki, Mohamad B. & Rangaraju, Sandeep Kumar, 2017. "Where do jobs go when oil prices drop?," Energy Economics, Elsevier, vol. 64(C), pages 469-482.
    11. Gent Bajraj & Jorge Lorca & Juan M. Wlasiuk, 2022. "On Foreign Drivers of EMEs Fluctuations," Working Papers Central Bank of Chile 951, Central Bank of Chile.
    12. Maldonado, Javier & Ruiz Ortega, Esther, 2017. "Accurate Subsampling Intervals of Principal Components Factors," DES - Working Papers. Statistics and Econometrics. WS 23974, Universidad Carlos III de Madrid. Departamento de Estadística.
    13. Franz Ramsauer & Aleksey Min & Michael Lingauer, 2019. "Estimation of FAVAR Models for Incomplete Data with a Kalman Filter for Factors with Observable Components," Econometrics, MDPI, vol. 7(3), pages 1-43, July.
    14. Krampe, J. & Paparoditis, E. & Trenkler, C., 2023. "Structural inference in sparse high-dimensional vector autoregressions," Journal of Econometrics, Elsevier, vol. 234(1), pages 276-300.
    15. Javier Maldonado & Esther Ruiz, 2021. "Accurate Confidence Regions for Principal Components Factors," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 83(6), pages 1432-1453, December.
    16. Anindya Banerjee & Victor Bystrov & Paul Mizen, 2017. "Structural Factor Analysis of Interest Rate Pass Through In Four Large Euro Area Economies," Working Papers in Economics 17/07, University of Canterbury, Department of Economics and Finance.
    17. Yoshiki Nakajima & Naoya Sueishi, 2022. "Forecasting the Japanese macroeconomy using high-dimensional data," The Japanese Economic Review, Springer, vol. 73(2), pages 299-324, April.
    18. Jushan Bai & Kunpeng Li & Lina Lu, 2016. "Estimation and Inference of FAVAR Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 620-641, October.
    19. Gonçalves, Sílvia & Perron, Benoit, 2014. "Bootstrapping factor-augmented regression models," Journal of Econometrics, Elsevier, vol. 182(1), pages 156-173.
    20. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
    21. Bruns, Martin, 2021. "Proxy Vector Autoregressions in a Data-rich Environment," Journal of Economic Dynamics and Control, Elsevier, vol. 123(C).
    22. Shintani, Mototsugu & Guo, Zi-Yi, 2011. "Finite Sample Performance of Principal Components Estimators for Dynamic Factor Models: Asymptotic vs. Bootstrap Approximations," EconStor Preprints 167627, ZBW - Leibniz Information Centre for Economics.
    23. Antoine A. Djogbenou, 2024. "Identifying oil price shocks with global, developed, and emerging latent real economy activity factors," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(1), pages 128-149, January.

    More about this item

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:japmet:v:34:y:2019:i:2:p:247-267. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/0883-7252/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.