IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Forecasting Macedonian GDP: Evaluation of different models for short-term forecasting

  • Branimir, Jovanovic
  • Magdalena, Petrovska
Registered author(s):

    We evaluate the forecasting performance of six different models for short-term forecasting of Macedonian GDP: 1) ARIMA model; 2) AR model estimated by the Kalman filter; 3) model that explains Macedonian GDP as a function of the foreign demand; 4) small structural model that links GDP components to a small set of explanatory variables; 5) static factor model that links GDP to the current values of several principal components obtained from a set of high-frequency indicators; 6) FAVAR model that explains GDP through its own lags and lags of the principal components. The comparison is done on the grounds of the Root Mean Squared Error and the Mean Absolute Error of the one-quarter-ahead forecasts. Results indicate that the static factor model outperforms the other models, providing evidence that information from large dataset can indeed improve the forecasts and suggesting that future efforts should be directed towards developing a state-of-the-art dynamic factor model. The simple model that links domestic GDP to foreign demand comes second, showing that simplicity must not be dismissed. The small structural model that explains every GDP component as a function of economic determinants comes third, “reviving” the interest in these old-school models, at least for the case of Macedonia.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: https://mpra.ub.uni-muenchen.de/43162/1/MPRA_paper_43162.pdf
    File Function: original version
    Download Restriction: no

    Paper provided by University Library of Munich, Germany in its series MPRA Paper with number 43162.

    as
    in new window

    Length:
    Date of creation: Aug 2010
    Date of revision:
    Handle: RePEc:pra:mprapa:43162
    Contact details of provider: Postal: Schackstr. 4, D-80539 Munich, Germany
    Phone: +49-(0)89-2180-2219
    Fax: +49-(0)89-2180-3900
    Web page: https://mpra.ub.uni-muenchen.de

    More information through EDIRC

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Tovar, Camilo Ernesto, 2009. "DSGE Models and Central Banks," Economics - The Open-Access, Open-Assessment E-Journal, Kiel Institute for the World Economy, vol. 3, pages 1-31.
    2. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2004. "The generalized dynamic factor model consistency and rates," Journal of Econometrics, Elsevier, vol. 119(2), pages 231-255, April.
    3. Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2000. "The Generalized Dynamic-Factor Model: Identification And Estimation," The Review of Economics and Statistics, MIT Press, vol. 82(4), pages 540-554, November.
    4. Marvin Goodfriend, 2007. "How the World Achieved Consensus on Monetary Policy," Journal of Economic Perspectives, American Economic Association, vol. 21(4), pages 47-68, Fall.
    5. Karim Barhoumi & Olivier Darné & Laurent Ferrara, 2010. "Are disaggregate data useful for factor analysis in forecasting French GDP?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(1-2), pages 132-144.
    6. Robert B. Litterman, 1985. "Forecasting with Bayesian vector autoregressions five years of experience," Working Papers 274, Federal Reserve Bank of Minneapolis.
    7. Smets, Frank & Wouters, Rafael, 2007. "Shocks and Frictions in US Business Cycles: A Bayesian DSGE Approach," CEPR Discussion Papers 6112, C.E.P.R. Discussion Papers.
    8. Marco Del Negro & Frank Schorfheide, 2004. "Priors from General Equilibrium Models for VARS," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 45(2), pages 643-673, 05.
    9. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
    10. Ben S. Bernanke & Jean Boivin & Piotr Eliasz, 2004. "Measuring the Effects of Monetary Policy: A Factor-Augmented Vector Autoregressive (FAVAR) Approach," NBER Working Papers 10220, National Bureau of Economic Research, Inc.
    11. Catherine Doz & Domenico Giannone & Lucrezia Reichlin, 2006. "A Two-step estimator for large approximate dynamic factor models based on Kalman filtering," THEMA Working Papers 2006-23, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    12. Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2003. "The Generalized Dynamic Factor Model. One-Sided Estimation and Forecasting," LEM Papers Series 2003/13, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    13. Sims, Christopher A, 1980. "Macroeconomics and Reality," Econometrica, Econometric Society, vol. 48(1), pages 1-48, January.
    14. Catherine Doz & Domenico Giannone & Lucrezia Reichlin, 2012. "A Quasi Maximum Likelihood Approach for Large, Approximate Dynamic Factor Models," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-00638440, HAL.
    15. Jushan Bai & Serena Ng, 2000. "Determining the Number of Factors in Approximate Factor Models," Boston College Working Papers in Economics 440, Boston College Department of Economics.
    16. Francis X. Diebold & Robert S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
    17. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
    18. Jean Boivin & Serena Ng, 2003. "Are More Data Always Better for Factor Analysis?," NBER Working Papers 9829, National Bureau of Economic Research, Inc.
    19. Ricardo Mourinho Félix & Luís Catela Nunes, 2003. "Forecasting Euro Area Aggregates with Bayesian VAR and VECM Models," Working Papers w200304, Banco de Portugal, Economics and Research Department.
    20. Andrea Carriero & George Kapetanios & Massimiliano Marcellino, 2007. "Forecasting Large Datasets with Reduced Rank Multivariate Models," Working Papers 617, Queen Mary University of London, School of Economics and Finance.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:43162. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ekkehart Schlicht)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.