IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/34015.html
   My bibliography  Save this paper

Early and Accurate Recession Detection Using Classifiers on the Anticipation-Precision Frontier

Author

Listed:
  • Pascal Michaillat

Abstract

This paper develops a new algorithm for detecting US recessions in real time. The algorithm constructs millions of recession classifiers by combining unemployment and vacancy data to reduce detection noise. Classifiers are then selected to avoid both false negatives (missed recessions) and false positives (nonexistent recessions). The selected classifiers are therefore perfect, in that they identify all 15 historical recessions in the 1929–2021 training period without any false positives. By further selecting classifiers that lie on the high-precision segment of the anticipation-precision frontier, the algorithm optimizes early detection without sacrificing precision. On average, over 1929–2021, the classifier ensemble signals recessions 2.2 months after their true onset, with a standard deviation of detection errors of 1.9 months. Applied to May 2025 data, the classifier ensemble gives a 71% probability that the US economy is currently in recession. A placebo test and backtests confirm the algorithm’s reliability. The classifier ensembles trained on 1929–2004, 1929–1984, and 1929–1964 data in backtests give a current recession probability of 58%, 83%, and 25%, respectively.

Suggested Citation

  • Pascal Michaillat, 2025. "Early and Accurate Recession Detection Using Classifiers on the Anticipation-Precision Frontier," NBER Working Papers 34015, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:34015
    Note: EFG ME
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w34015.pdf
    Download Restriction: Access to the full text is generally limited to series subscribers, however if the top level domain of the client browser is in a developing country or transition economy free access is provided. More information about subscriptions and free access is available at http://www.nber.org/wwphelp.html. Free access is also available to older working papers.
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or

    for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Michael W. McCracken & Serena Ng, 2016. "FRED-MD: A Monthly Database for Macroeconomic Research," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 574-589, October.
    2. Manfred Keil & Edward Leamer & Yao Li, 2023. "An investigation into the probability that this is the last year of the economic expansion," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(5), pages 1228-1244, August.
    3. Zhihong Chen & Azhar Iqbal & Huiwen Lai, 2011. "Forecasting the probability of US recessions: a Probit and dynamic factor modelling approach," Canadian Journal of Economics, Canadian Economics Association, vol. 44(2), pages 651-672, May.
    4. Sun, Jiandong & Feng, Shuaizhang & Hu, Yingyao, 2021. "Misclassification errors in labor force statuses and the early identification of economic recessions," Journal of Asian Economics, Elsevier, vol. 75(C).
    5. Watson, Mark W. & Stock, James H., 2014. "Estimating turning points using large data sets," Scholarly Articles 33192198, Harvard University Department of Economics.
    6. Pascal Michaillat & Emmanuel Saez, 2015. "Aggregate Demand, Idle Time, and Unemployment," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 130(2), pages 507-569.
    7. Huang, Yu-Fan & Startz, Richard, 2020. "Improved recession dating using stock market volatility," International Journal of Forecasting, Elsevier, vol. 36(2), pages 507-514.
    8. Startz, Richard, 2008. "Binomial Autoregressive Moving Average Models With an Application to U.S. Recessions," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 1-8, January.
    9. Serena Ng, 2014. "Viewpoint: Boosting Recessions," Canadian Journal of Economics, Canadian Economics Association, vol. 47(1), pages 1-34, February.
    10. Heikki Kauppi & Pentti Saikkonen, 2008. "Predicting U.S. Recessions with Dynamic Binary Response Models," The Review of Economics and Statistics, MIT Press, vol. 90(4), pages 777-791, November.
    11. Henri Nyberg, 2010. "Dynamic probit models and financial variables in recession forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(1-2), pages 215-230.
    12. Edward E. Leamer, 2024. "Data patterns that reliably precede US recessions," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(7), pages 2522-2539, November.
    13. Harding, Don & Pagan, Adrian, 2002. "Dissecting the cycle: a methodological investigation," Journal of Monetary Economics, Elsevier, vol. 49(2), pages 365-381, March.
    14. James H. Stock & Mark W. Watson, 1993. "Introduction to "Business Cycles, Indicators and Forecasting"," NBER Chapters, in: Business Cycles, Indicators, and Forecasting, pages 1-10, National Bureau of Economic Research, Inc.
    15. Travis J. Berge, 2015. "Predicting Recessions with Leading Indicators: Model Averaging and Selection over the Business Cycle," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 34(6), pages 455-471, September.
    16. James H. Stock & Mark W. Watson, 2010. "Indicators for Dating Business Cycles: Cross-History Selection and Comparisons," American Economic Review, American Economic Association, vol. 100(2), pages 16-19, May.
    17. James H. Stock & Mark W. Watson, 1989. "New Indexes of Coincident and Leading Economic Indicators," NBER Chapters, in: NBER Macroeconomics Annual 1989, Volume 4, pages 351-409, National Bureau of Economic Research, Inc.
    18. Hamilton, James D., 2011. "Calling recessions in real time," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1006-1026, October.
    19. Stock, James H. & Watson, Mark W., 2014. "Estimating turning points using large data sets," Journal of Econometrics, Elsevier, vol. 178(P2), pages 368-381.
    20. Jay L. Zagorsky, 1998. "Job Vacancies In The United States: 1923 To 1994," The Review of Economics and Statistics, MIT Press, vol. 80(2), pages 338-345, May.
    21. Marcelle Chauvet & Simon Potter, 2005. "Forecasting recessions using the yield curve," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 24(2), pages 77-103.
    22. Qi, Min, 2001. "Predicting US recessions with leading indicators via neural network models," International Journal of Forecasting, Elsevier, vol. 17(3), pages 383-401.
    23. Michael D. Bauer & Thomas M. Mertens, 2018. "Information in the Yield Curve about Future Recessions," FRBSF Economic Letter, Federal Reserve Bank of San Francisco.
    24. Robert Shimer, 2005. "The Cyclical Behavior of Equilibrium Unemployment and Vacancies," American Economic Review, American Economic Association, vol. 95(1), pages 25-49, March.
    25. Katharine G. Abraham, 1987. "Help-Wanted Advertising, Job Vacancies, and Unemployment," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 18(1), pages 207-248.
    26. Gerhard Bry & Charlotte Boschan, 1971. "Foreword to "Cyclical Analysis of Time Series: Selected Procedures and Computer Programs"," NBER Chapters, in: Cyclical Analysis of Time Series: Selected Procedures and Computer Programs, pages -1, National Bureau of Economic Research, Inc.
    27. Chauvet, Marcelle, 1998. "An Econometric Characterization of Business Cycle Dynamics with Factor Structure and Regime Switching," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 969-996, November.
    28. Ana Beatriz Galvão & Michael Owyang, 2022. "Forecasting low‐frequency macroeconomic events with high‐frequency data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(7), pages 1314-1333, November.
    29. Travis J. Berge & Òscar Jordà, 2011. "Evaluating the Classification of Economic Activity into Recessions and Expansions," American Economic Journal: Macroeconomics, American Economic Association, vol. 3(2), pages 246-277, April.
    30. James H. Stock & Mark W. Watson, 1993. "Business Cycles, Indicators, and Forecasting," NBER Books, National Bureau of Economic Research, Inc, number stoc93-1, October.
    31. Giusto, Andrea & Piger, Jeremy, 2017. "Identifying business cycle turning points in real time with vector quantization," International Journal of Forecasting, Elsevier, vol. 33(1), pages 174-184.
    32. Davig, Troy & Hall, Aaron Smalter, 2019. "Recession forecasting using Bayesian classification," International Journal of Forecasting, Elsevier, vol. 35(3), pages 848-867.
    33. Stock, James H. & Watson, Mark W. (ed.), 1993. "Business Cycles, Indicators, and Forecasting," National Bureau of Economic Research Books, University of Chicago Press, edition 1, number 9780226774886.
    34. Gerhard Bry & Charlotte Boschan, 1971. "Cyclical Analysis of Time Series: Selected Procedures and Computer Programs," NBER Books, National Bureau of Economic Research, Inc, number bry_71-1, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nissilä, Wilma, 2020. "Probit based time series models in recession forecasting – A survey with an empirical illustration for Finland," BoF Economics Review 7/2020, Bank of Finland.
    2. Michaillat, Pascal & Saez, Emmanuel, 2024. "Has the Recession Started?," Santa Cruz Department of Economics, Working Paper Series qt0h0295t7, Department of Economics, UC Santa Cruz.
    3. Sergey V. Smirnov & Nikolay V. Kondrashov & Anna V. Petronevich, 2017. "Dating Cyclical Turning Points for Russia: Formal Methods and Informal Choices," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 13(1), pages 53-73, May.
    4. Giusto, Andrea & Piger, Jeremy, 2017. "Identifying business cycle turning points in real time with vector quantization," International Journal of Forecasting, Elsevier, vol. 33(1), pages 174-184.
    5. Eraslan, Sercan & Nöller, Marvin, 2020. "Recession probabilities falling from the STARs," Discussion Papers 08/2020, Deutsche Bundesbank.
    6. Li, Haixi & Sheng, Xuguang Simon & Yang, Jingyun, 2021. "Monitoring recessions: A Bayesian sequential quickest detection method," International Journal of Forecasting, Elsevier, vol. 37(2), pages 500-510.
    7. Aastveit, Knut Are & Jore, Anne Sofie & Ravazzolo, Francesco, 2016. "Identification and real-time forecasting of Norwegian business cycles," International Journal of Forecasting, Elsevier, vol. 32(2), pages 283-292.
    8. Davig, Troy & Hall, Aaron Smalter, 2019. "Recession forecasting using Bayesian classification," International Journal of Forecasting, Elsevier, vol. 35(3), pages 848-867.
    9. Nataša Erjavec & Petar Soriæ & Mirjana Èižmešija, 2016. "Predicting the probability of recession in Croatia: Is economic sentiment the missing link?," Zbornik radova Ekonomskog fakulteta u Rijeci/Proceedings of Rijeka Faculty of Economics, University of Rijeka, Faculty of Economics and Business, vol. 34(2), pages 555-579.
    10. repec:ptu:bdpart:e201703 is not listed on IDEAS
    11. Vrontos, Spyridon D. & Galakis, John & Vrontos, Ioannis D., 2021. "Modeling and predicting U.S. recessions using machine learning techniques," International Journal of Forecasting, Elsevier, vol. 37(2), pages 647-671.
    12. António Rua, 2017. "Dating the Portuguese business cycle," Economic Bulletin and Financial Stability Report Articles and Banco de Portugal Economic Studies, Banco de Portugal, Economics and Research Department.
    13. Cem Çakmakli & Hamza Dem I˙rcani & Sumru Altug, 2021. "Modelling of Economic and Financial Conditions for Real‐Time Prediction of Recessions," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 83(3), pages 663-685, June.
    14. van Os, Bram & van Dijk, Dick, 2024. "Accelerating peak dating in a dynamic factor Markov-switching model," International Journal of Forecasting, Elsevier, vol. 40(1), pages 313-323.
    15. repec:ptu:bdpart:r201703 is not listed on IDEAS
    16. Morais, Igor Alexandre C. & Chauvet, Marcelle, 2011. "Leading Indicators for the Capital Goods Industry," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 31(1), March.
    17. Issler, Joao Victor & Vahid, Farshid, 2006. "The missing link: using the NBER recession indicator to construct coincident and leading indices of economic activity," Journal of Econometrics, Elsevier, vol. 132(1), pages 281-303, May.
    18. Antonin Aviat & Frédérique Bec & Claude Diebolt & Catherine Doz & Denis Ferrand & Laurent Ferrara & Eric Heyer & Valérie Mignon & Pierre-Alain Pionnier, 2021. "Dating business cycles in France: a reference chronology," SciencePo Working papers Main hal-03373425, HAL.
    19. Hasse, Jean-Baptiste & Lajaunie, Quentin, 2022. "Does the yield curve signal recessions? New evidence from an international panel data analysis," The Quarterly Review of Economics and Finance, Elsevier, vol. 84(C), pages 9-22.
    20. Heikki Kauppi, 2019. "Recession Prediction with OptimalUse of Leading Indicators," Discussion Papers 125, Aboa Centre for Economics.
    21. Abdullah Tahir & Jameel Ahmed & Waqas Ahmed, 2018. "Robust Quarterization of GDP and Determination of Business Cycle Dates for IGC Partner Countries," SBP Working Paper Series 97, State Bank of Pakistan, Research Department.
    22. Chauvet, Marcelle & Potter, Simon, 2013. "Forecasting Output," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 141-194, Elsevier.

    More about this item

    JEL classification:

    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • E24 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Employment; Unemployment; Wages; Intergenerational Income Distribution; Aggregate Human Capital; Aggregate Labor Productivity
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • J63 - Labor and Demographic Economics - - Mobility, Unemployment, Vacancies, and Immigrant Workers - - - Turnover; Vacancies; Layoffs
    • N12 - Economic History - - Macroeconomics and Monetary Economics; Industrial Structure; Growth; Fluctuations - - - U.S.; Canada: 1913-

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:34015. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.