IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Non-parametric regression for binary dependent variables

  • Markus Fr�lich

Finite-sample properties of non-parametric regression for binary dependent variables are analyzed. Non parametric regression is generally considered as highly variable in small samples when the number of regressors is large. In binary choice models, however, it may be more reliable since its variance is bounded. The precision in estimating conditional means as well as marginal effects is investigated in settings with many explanatory variables (14 regressors) and small sample sizes (250 or 500 observations). The Klein-Spady estimator, Nadaraya-Watson regression and local linear regression often perform poorly in the simulations. Local likelihood logit regression, on the other hand, is 25 to 55% more precise than parametric regression in the Monte Carlo simulations. In an application to female labour supply, local logit finds heterogeneity in the effects of children on employment that is not detected by parametric or semiparametric estimation. (The semiparametric estimator actually leads to rather similar results as the parametric estimator.) Copyright Royal Economic Society 2006

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.blackwell-synergy.com/doi/abs/10.1111/j.1368-423X.2006.00196.x
File Function: link to full text
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Royal Economic Society in its journal Econometrics Journal.

Volume (Year): 9 (2006)
Issue (Month): 3 (November)
Pages: 511-540

as
in new window

Handle: RePEc:ect:emjrnl:v:9:y:2006:i:3:p:511-540
Contact details of provider: Postal: Office of the Secretary-General, School of Economics and Finance, University of St. Andrews, St. Andrews, Fife, KY16 9AL, UK
Phone: +44 1334 462479
Web page: http://www.res.org.uk/Email:


More information through EDIRC

Order Information: Web: http://www.ectj.org

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:ect:emjrnl:v:9:y:2006:i:3:p:511-540. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing)

or (Christopher F. Baum)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.