IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v24y2008i1p76-86.html
   My bibliography  Save this article

Consensus and uncertainty: Using forecast probabilities of output declines

Author

Listed:
  • Clements, Michael P.

Abstract

A number of studies have addressed the relationship between intra-personal uncertainty and inter-personal disagreement about the future values of economic variables such as output growth and inflation using the SPF. By making use of the SPF respondents' probability forecasts of declines in output, we are able to construct a quarterly series of output growth uncertainty to supplement the annual series that are often used in such analyses. We also consider the relationship between disagreement and uncertainty for probability forecasts of declines in output.

Suggested Citation

  • Clements, Michael P., 2008. "Consensus and uncertainty: Using forecast probabilities of output declines," International Journal of Forecasting, Elsevier, vol. 24(1), pages 76-86.
  • Handle: RePEc:eee:intfor:v:24:y:2008:i:1:p:76-86
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169-2070(07)00086-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lahiri, Kajal & Teigland, Christie & Zaporowski, Mark, 1988. "Interest Rates and the Subjective Probability Distribution of Inflation Forecasts," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 20(2), pages 233-248, May.
    2. Robert W. Rich & Joseph Tracy, 2003. "Modeling uncertainty: predictive accuracy as a proxy for predictive confidence," Staff Reports 161, Federal Reserve Bank of New York.
    3. Rich, Robert W & Butler, J S, 1998. "Disagreement as a Measure of Uncertainty: A Comment on Bomberger," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 30(3), pages 411-419, August.
    4. Keane, Michael P & Runkle, David E, 1990. "Testing the Rationality of Price Forecasts: New Evidence from Panel Data," American Economic Review, American Economic Association, vol. 80(4), pages 714-735, September.
    5. Bomberger, William A, 1996. "Disagreement as a Measure of Uncertainty," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 28(3), pages 381-392, August.
    6. Victor Zarnowitz & Louis A. Lambros, 1983. "Consensus and Uncertainty in Economic Prediction," NBER Working Papers 1171, National Bureau of Economic Research, Inc.
    7. Michael P. Clements & David I. Harvey, 2010. "Forecast encompassing tests and probability forecasts," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(6), pages 1028-1062.
    8. Giordani, Paolo & Soderlind, Paul, 2003. "Inflation forecast uncertainty," European Economic Review, Elsevier, vol. 47(6), pages 1037-1059, December.
    9. Lahiri, Kajal & Teigland, Christie, 1987. "On the normality of probability distributions of inflation and GNP forecasts," International Journal of Forecasting, Elsevier, vol. 3(2), pages 269-279.
    10. Zarnowitz, Victor, 1985. "Rational Expectations and Macroeconomic Forecasts," Journal of Business & Economic Statistics, American Statistical Association, vol. 3(4), pages 293-311, October.
    11. Michael Clements, 2006. "Evaluating the survey of professional forecasters probability distributions of expected inflation based on derived event probability forecasts," Empirical Economics, Springer, vol. 31(1), pages 49-64, March.
    12. Dean Croushore, 1993. "Introducing: the survey of professional forecasters," Business Review, Federal Reserve Bank of Philadelphia, issue Nov, pages 3-15.
    13. Murphy, Allan H. & Winkler, Robert L., 1992. "Diagnostic verification of probability forecasts," International Journal of Forecasting, Elsevier, vol. 7(4), pages 435-455, March.
    14. Zarnowitz, Victor & Lambros, Louis A, 1987. "Consensus and Uncertainty in Economic Prediction," Journal of Political Economy, University of Chicago Press, vol. 95(3), pages 591-621, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Clements, Michael P., 2010. "Explanations of the inconsistencies in survey respondents' forecasts," European Economic Review, Elsevier, vol. 54(4), pages 536-549, May.
    2. Nikolay Hristov & Markus Roth, 2019. "Uncertainty Shocks and Financial Crisis Indicators," CESifo Working Paper Series 7839, CESifo.
    3. Masayuki Morikawa, 2016. "What Types of Policy Uncertainties Matter for Business?," Pacific Economic Review, Wiley Blackwell, vol. 21(5), pages 527-540, December.
    4. Yoshiyuki Arata & Yosuke Kimura & Hiroki Murakami, 2017. "Aggregate implications of lumpy investment under heterogeneity and uncertainty: a model of collective behavior," Evolutionary and Institutional Economics Review, Springer, vol. 14(2), pages 311-333, December.
    5. ARATA Yoshiyuki & KIMURA Yosuke & MURAKAMI Hiroki, 2015. "Macroeconomic Consequences of Lumpy Investment under Uncertainty," Discussion papers 15120, Research Institute of Economy, Trade and Industry (RIETI).
    6. Clements, Michael P., 2008. "Rounding of probability forecasts : The SPF forecast probabilities of negative output growth," The Warwick Economics Research Paper Series (TWERPS) 869, University of Warwick, Department of Economics.
    7. Lahiri, Kajal & Peng, Huaming & Zhao, Yongchen, 2015. "Testing the value of probability forecasts for calibrated combining," International Journal of Forecasting, Elsevier, vol. 31(1), pages 113-129.
    8. Saygin Sahinoz & Evren Erdogan Cosar, 2020. "Quantifying uncertainty and identifying its impacts on the Turkish economy," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 47(2), pages 365-387, May.
    9. Song, ChiUng & Boulier, Bryan L. & Stekler, Herman O., 2009. "Measuring consensus in binary forecasts: NFL game predictions," International Journal of Forecasting, Elsevier, vol. 25(1), pages 182-191.
    10. Svetlana Makarova, 2014. "Risk and Uncertainty: Macroeconomic Perspective," UCL SSEES Economics and Business working paper series 129, UCL School of Slavonic and East European Studies (SSEES).
    11. Lahiri, Kajal & Wang, J. George, 2013. "Evaluating probability forecasts for GDP declines using alternative methodologies," International Journal of Forecasting, Elsevier, vol. 29(1), pages 175-190.
    12. Kajal Lahiri & Yongchen Zhao, 2016. "Determinants of Consumer Sentiment Over Business Cycles: Evidence from the US Surveys of Consumers," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 12(2), pages 187-215, December.
    13. Morikawa, Masayuki, 2016. "Business uncertainty and investment: Evidence from Japanese companies," Journal of Macroeconomics, Elsevier, vol. 49(C), pages 224-236.
    14. Sergey V. Smirnov & Daria A. Avdeeva, 2016. "Wishful Bias in Predicting Us Recessions: Indirect Evidence," HSE Working papers WP BRP 135/EC/2016, National Research University Higher School of Economics.
    15. Michael P. Clements, 2011. "An Empirical Investigation of the Effects of Rounding on the SPF Probabilities of Decline and Output Growth Histograms," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 43(1), pages 207-220, February.
    16. MORIKAWA Masayuki, 2019. "Firms' Subjective Uncertainty and Forecast Errors," Discussion papers 19055, Research Institute of Economy, Trade and Industry (RIETI).
    17. Lahiri, Kajal & Yang, Liu, 2013. "Forecasting Binary Outcomes," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1025-1106, Elsevier.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Clements, Michael P., 2006. "Internal consistency of survey respondentsíforecasts: Evidence based on the Survey of Professional Forecasters," Economic Research Papers 269742, University of Warwick - Department of Economics.
    2. Clements, Michael P, 2012. "Subjective and Ex Post Forecast Uncertainty : US Inflation and Output Growth," The Warwick Economics Research Paper Series (TWERPS) 995, University of Warwick, Department of Economics.
    3. Clements, Michael P., 2010. "Explanations of the inconsistencies in survey respondents' forecasts," European Economic Review, Elsevier, vol. 54(4), pages 536-549, May.
    4. Lahiri, Kajal & Liu, Fushang, 2005. "ARCH models for multi-period forecast uncertainty-a reality check using a panel of density forecasts," MPRA Paper 21693, University Library of Munich, Germany.
    5. Kajal Lahiri & Fushang Liu, 2006. "Modelling multi‐period inflation uncertainty using a panel of density forecasts," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(8), pages 1199-1219, December.
    6. Giordani, Paolo & Soderlind, Paul, 2003. "Inflation forecast uncertainty," European Economic Review, Elsevier, vol. 47(6), pages 1037-1059, December.
    7. Harvey, David I. & Newbold, Paul, 2003. "The non-normality of some macroeconomic forecast errors," International Journal of Forecasting, Elsevier, vol. 19(4), pages 635-653.
    8. Jonas Dovern & Ulrich Fritsche, 2008. "Estimating fundamental cross-section dispersion from fixed event forecasts," Macroeconomics and Finance Series 200801, University of Hamburg, Department of Socioeconomics.
    9. Clements, Michael P., 2008. "Rounding of probability forecasts : The SPF forecast probabilities of negative output growth," The Warwick Economics Research Paper Series (TWERPS) 869, University of Warwick, Department of Economics.
    10. Jordi Pons-Novell, 2003. "Strategic bias, herding behaviour and economic forecasts," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 22(1), pages 67-77.
    11. Jean Sepulveda-Umanzor, 2004. "The Relation Between Macroeconomic Uncertainty And The Expected Performance Of the Economy," Econometric Society 2004 Latin American Meetings 304, Econometric Society.
    12. Christian Grimme & Steffen Henzel & Elisabeth Wieland, 2014. "Inflation uncertainty revisited: a proposal for robust measurement," Empirical Economics, Springer, vol. 47(4), pages 1497-1523, December.
    13. Kajal Lahiri & Xuguang Sheng, 2010. "Measuring forecast uncertainty by disagreement: The missing link," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 514-538.
    14. Lauren K. Fine & Stephen K. McNees, 1994. "Diversity, uncertainty, and accuracy of inflation forecasts," New England Economic Review, Federal Reserve Bank of Boston, issue Jul, pages 33-44.
    15. Engelberg, Joseph & Manski, Charles F. & Williams, Jared, 2009. "Comparing the Point Predictions and Subjective Probability Distributions of Professional Forecasters," Journal of Business & Economic Statistics, American Statistical Association, vol. 27, pages 30-41.
    16. Michael P. Clements, 2014. "US Inflation Expectations and Heterogeneous Loss Functions, 1968–2010," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(1), pages 1-14, January.
    17. Hall, Stephen G. & Mitchell, James, 2007. "Combining density forecasts," International Journal of Forecasting, Elsevier, vol. 23(1), pages 1-13.
    18. Stefania D'Amico & Athanasios Orphanides, 2008. "Uncertainty and disagreement in economic forecasting," Finance and Economics Discussion Series 2008-56, Board of Governors of the Federal Reserve System (U.S.).
    19. Joshua Abel & Robert Rich & Joseph Song & Joseph Tracy, 2016. "The Measurement and Behavior of Uncertainty: Evidence from the ECB Survey of Professional Forecasters," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(3), pages 533-550, April.
    20. Clements, Michael P., 2021. "Do survey joiners and leavers differ from regular participants? The US SPF GDP growth and inflation forecasts," International Journal of Forecasting, Elsevier, vol. 37(2), pages 634-646.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:24:y:2008:i:1:p:76-86. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Nithya Sathishkumar (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.