IDEAS home Printed from https://ideas.repec.org/p/bdr/borrec/575.html
   My bibliography  Save this paper

Evaluación de pronóstico de una red neuronal sobre el PIB en Colombia

Author

Listed:
  • José Mauricio Salazar Sáenz

Abstract

Las redes neuronales artificiales han mostrado ser modelos robustos para dar cuenta del comportamiento de diferentes variables. En el presente trabajo se emplean para modelar la relación no lineal del crecimiento del PIB. Tres modelos son considerados: dos autoregresivos (especificación lineal y no lineal) y una red neuronal que usa la tasa de interés. Evaluando el desempeño de los modelos dentro y fuera de muestra, los pronósticos realizados por las redes neuronales artificiales superan ampliamente a los modelos lineales, siendo esta evidencia de relaciones asimétricas en el comportamiento del PIB en Colombia.

Suggested Citation

  • José Mauricio Salazar Sáenz, 2009. "Evaluación de pronóstico de una red neuronal sobre el PIB en Colombia," Borradores de Economia 575, Banco de la Republica de Colombia.
  • Handle: RePEc:bdr:borrec:575
    DOI: 10.32468/be.575
    as

    Download full text from publisher

    File URL: https://doi.org/10.32468/be.575
    Download Restriction: no

    File URL: https://libkey.io/10.32468/be.575?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Fabiani, S. & Druant, M. & Hernando, I. & Kwapil, C. & Landau, B. & Loupias, C. & Martins, F. & Mathä, T. & Sabbatini, R. & Stahl, H. & Stockman, A., 2005. "The Pricing Behaviour of Firms in the Euro Area: New Survey Evidence," Working papers 135, Banque de France.
    2. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654, January.
    3. Martha Misas Arango & Enrique López Enciso & Pablo Querubín Borrero, 2002. "La inflación en Colombia: una aproximación desde las redes neuronales," Revista ESPE - Ensayos Sobre Política Económica, Banco de la República, vol. 20(41-42), pages 143-214, June.
    4. Sims, Christopher A, 1980. "Comparison of Interwar and Postwar Business Cycles: Monetarism Reconsidered," American Economic Review, American Economic Association, vol. 70(2), pages 250-257, May.
    5. Carmen M. Reinhart. & Vicent R. Reinhart, 1991. "Fluctuaciones del producto y choques monetarios: evidencia colombiana," Revista ESPE - Ensayos Sobre Política Económica, Banco de la República, vol. 10(20), pages 53-85, December.
    6. Martha Misas & Enrique López & Carlos Arango & Juan Nicolás Hernández, 2003. "La Demanda de Efectivo en Colombia: Una Caja Negra a la Luz de las Redes Neuronales," Borradores de Economia 268, Banco de la Republica de Colombia.
    7. Carmen M. Reinhart. & Vicent R. Reinhart, 1991. "Fluctuaciones del producto y choques monetarios: evidencia colombiana," Revista ESPE - Ensayos sobre Política Económica, Banco de la Republica de Colombia, vol. 10(20), pages 53-85, December.
    8. Silvia Fabiani & Martine Druant & Ignacio Hernando & Claudia Kwapil & Bettina Landau & Claire Loupias & Fernando Martins & Thomas Mathä & Roberto Sabbatini & Harald Stahl & Ad Stokman, 2006. "What Firms' Surveys Tell Us about Price-Setting Behavior in the Euro Area," International Journal of Central Banking, International Journal of Central Banking, vol. 2(3), September.
    9. Norman R. Swanson & Halbert White, 1997. "A Model Selection Approach To Real-Time Macroeconomic Forecasting Using Linear Models And Artificial Neural Networks," The Review of Economics and Statistics, MIT Press, vol. 79(4), pages 540-550, November.
    10. Araújo, E. & Gama, C. A. F., 2004. "Replicando características de ciclos econômicos: um estudo comparativo entre Redes Neurais Artificiais e modelos ARIMA," Insper Working Papers wpe_45, Insper Working Paper, Insper Instituto de Ensino e Pesquisa.
    11. Hendry, David F., 1995. "Dynamic Econometrics," OUP Catalogue, Oxford University Press, number 9780198283164.
    12. James H. Stock & Mark W.Watson, 2003. "Forecasting Output and Inflation: The Role of Asset Prices," Journal of Economic Literature, American Economic Association, vol. 41(3), pages 788-829, September.
    13. Greg Tkacz & Sarah Hu, 1999. "Forecasting GDP Growth Using Artificial Neural Networks," Staff Working Papers 99-3, Bank of Canada.
    14. Munir A. Jalil. B & Martha Misas, 2006. "Evaluación de pronósticos del tipo de cambio utilizando," Borradores de Economia 2636, Banco de la Republica.
    15. Yoshihito Saito & Yoko Takeda, 2000. "Predicting the US Real GDP Growth Using Yield Spreads of Corporate Bonds," Bank of Japan Working Paper Series International Department,, Bank of Japan.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. José Mauricio Salazar Sáenz, 2009. "Evaluación de pronóstico de una red neuronal sobre el PIB en Colombia," Borradores de Economia 5934, Banco de la Republica.
    2. María Clara Aristizábal Restrepo, 2006. "Evaluación asimétrica de una red neuronal artificial:Aplicación al caso de la inflación en Colombia," Borradores de Economia 377, Banco de la Republica de Colombia.
    3. José Luis Torres, 2006. "Modelos para la Inflación Básica de Bienes Transables y No Transables en Colombia," Borradores de Economia 3246, Banco de la Republica.
    4. LeBaron, Blake, 2003. "Non-Linear Time Series Models in Empirical Finance,: Philip Hans Franses and Dick van Dijk, Cambridge University Press, Cambridge, 2000, 296 pp., Paperback, ISBN 0-521-77965-0, $33, [UK pound]22.95, [," International Journal of Forecasting, Elsevier, vol. 19(4), pages 751-752.
    5. Carlos León & Fabio Ortega, 2018. "Nowcasting Economic Activity with Electronic Payments Data: A Predictive Modeling Approach," Revista de Economía del Rosario, Universidad del Rosario, vol. 21(2), pages 381-407, December.
    6. van der Cruijsen, C.A.B., 2008. "The economic impact of central bank transparency," Other publications TiSEM 86c1ba91-1952-45b4-adac-8, Tilburg University, School of Economics and Management.
    7. Marco Hoeberichts & Ad Stokman, 2010. "Price setting behaviour in the Netherlands: results of a survey," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 31(2-3), pages 135-149.
    8. Sarah Arndt & Zeno Enders, 2023. "The Transmission of Supply Shocks in Different Inflation Regimes," CESifo Working Paper Series 10839, CESifo.
    9. Forni, L. & Gerali, A. & Pisani, M., 2010. "Macroeconomic Effects Of Greater Competition In The Service Sector: The Case Of Italy," Macroeconomic Dynamics, Cambridge University Press, vol. 14(5), pages 677-708, November.
    10. Bampinas, Georgios & Panagiotidis, Theodore, 2016. "Hedging inflation with individual US stocks: A long-run portfolio analysis," The North American Journal of Economics and Finance, Elsevier, vol. 37(C), pages 374-392.
    11. Martha Misas A. & Enrique López E. & Juan Carlos Parra A., 2013. "La formación de precios en las empresas colombianas: evidencia a partir de una encuesta directa," Investigación Conjunta-Joint Research, in: Laura Inés D'Amato & Enrique López Enciso & María Teresa Ramírez Giraldo (ed.), Dinámica inflacionaria, persistencia y formación de precios y salarios, edition 1, chapter 11, pages 273-348, Centro de Estudios Monetarios Latinoamericanos, CEMLA.
    12. Daniel Levy & Andrew T. Young, 2021. "Promise, trust, and betrayal: Costs of breaching an implicit contract," Southern Economic Journal, John Wiley & Sons, vol. 87(3), pages 1031-1051, January.
    13. Terasvirta, Timo, 2006. "Forecasting economic variables with nonlinear models," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 8, pages 413-457, Elsevier.
    14. van der Cruijsen, Carin A.B. & Eijffinger, Sylvester C.W. & Hoogduin, Lex H., 2010. "Optimal central bank transparency," Journal of International Money and Finance, Elsevier, vol. 29(8), pages 1482-1507, December.
    15. Parigi, Giuseppe & Golinelli, Roberto, 2005. "Short-Run Italian GDP Forecasting and Real-Time Data," CEPR Discussion Papers 5302, C.E.P.R. Discussion Papers.
    16. Emmanuel Dhyne & Luis J. Alvarez & Herve Le Bihan & Giovanni Veronese & Daniel Dias & Johannes Hoffmann & Nicole Jonker & Patrick Lunnemann & Fabio Rumler & Jouko Vilmunen, 2006. "Price Changes in the Euro Area and the United States: Some Facts from Individual Consumer Price Data," Journal of Economic Perspectives, American Economic Association, vol. 20(2), pages 171-192, Spring.
    17. Jang, Tae-Seok & Sacht, Stephen, 2021. "Forecast heuristics, consumer expectations, and New-Keynesian macroeconomics: A Horse race," Journal of Economic Behavior & Organization, Elsevier, vol. 182(C), pages 493-511.
    18. Rodríguez-Vargas, Adolfo, 2020. "Forecasting Costa Rican inflation with machine learning methods," Latin American Journal of Central Banking (previously Monetaria), Elsevier, vol. 1(1).
    19. Yunus Aksoy & Miguel A. Leon-Ledesma, 2004. "Interest Rates and Output in the Long Run," Money Macro and Finance (MMF) Research Group Conference 2004 92, Money Macro and Finance Research Group.
    20. Rossi, Barbara, 2013. "Advances in Forecasting under Instability," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1203-1324, Elsevier.

    More about this item

    Keywords

    Red neuronal artificial; no linealidad; PIB; Rolling de pronóstico; evaluación de pronóstico.;
    All these keywords.

    JEL classification:

    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E17 - Macroeconomics and Monetary Economics - - General Aggregative Models - - - Forecasting and Simulation: Models and Applications
    • E23 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Production

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bdr:borrec:575. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Clorith Angélica Bahos Olivera (email available below). General contact details of provider: https://edirc.repec.org/data/brcgvco.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.