IDEAS home Printed from https://ideas.repec.org/p/col/000094/005934.html
   My bibliography  Save this paper

Evaluación de pronóstico de una red neuronal sobre el PIB en Colombia

Author

Listed:
  • José Mauricio Salazar Sáenz

Abstract

Las redes neuronales artificiales han mostrado ser modelos robustos para dar cuenta del comportamiento de diferentes variables. En el presente trabajo se emplean para modelar la relación no lineal del crecimiento del PIB. Tres modelos son considerados: dos autoregresivos (especificación lineal y no lineal) y una red neuronal que usa la tasa de interés. Evaluando el desempeño de los modelos dentro y fuera de muestra, los pronósticos realizados por las redes neuronales artificiales superan ampliamente a los modelos lineales, siendo esta evidencia de relaciones asimétricas en el comportamiento del PIB en Colombia.

Suggested Citation

  • José Mauricio Salazar Sáenz, 2009. "Evaluación de pronóstico de una red neuronal sobre el PIB en Colombia," BORRADORES DE ECONOMIA 005934, BANCO DE LA REPÚBLICA.
  • Handle: RePEc:col:000094:005934
    as

    Download full text from publisher

    File URL: http://www.banrep.gov.co/docum/ftp/borra575.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Martha Misas Arango & Enrique López Enciso & Pablo Querubín Borrero, 2002. "La inflación en Colombia: una aproximación desde las redes neuronales," Revista ESPE - Ensayos sobre Política Económica, Banco de la Republica de Colombia, vol. 20(41-42), pages 143-214, June.
    2. Sims, Christopher A, 1980. "Comparison of Interwar and Postwar Business Cycles: Monetarism Reconsidered," American Economic Review, American Economic Association, vol. 70(2), pages 250-257, May.
    3. Carmen M. Reinhart & Vincent Raymond Reinhart, 1991. "Fluctuaciones del Producto y Choques Monetarios: Evidencia Colombiana," Revista ESPE - Ensayos sobre Política Económica, Banco de la Republica de Colombia, vol. 0(20), pages 53-85, December.
    4. James H. Stock & Mark W.Watson, 2003. "Forecasting Output and Inflation: The Role of Asset Prices," Journal of Economic Literature, American Economic Association, vol. 41(3), pages 788-829, September.
    5. Hendry, David F., 1995. "Dynamic Econometrics," OUP Catalogue, Oxford University Press, number 9780198283164.
    6. Donald P. Morgan, 1993. "Asymmetric effects of monetary policy," Economic Review, Federal Reserve Bank of Kansas City, vol. 78(Q II), pages 21-33.
    7. Munir A. Jalil. B & Martha Misas, 2006. "Evaluación de pronósticos del tipo de cambio utilizando," BORRADORES DE ECONOMIA 002636, BANCO DE LA REPÚBLICA.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. José Mauricio Salazar Sáenz, 2009. "Evaluación de pronóstico de una red neuronal sobre el PIB en Colombia," Borradores de Economia 575, Banco de la Republica de Colombia.
    2. Yunus Aksoy & Miguel A. Leon-Ledesma, 2004. "Interest Rates and Output in the Long Run," Money Macro and Finance (MMF) Research Group Conference 2004 92, Money Macro and Finance Research Group.
    3. Michaelides, Panayotis G. & Milios, John G. & Konstantakis, Konstantinos N. & Tarnaras, Panayiotis, 2015. "Quantity-of-money fluctuations and economic instability: empirical evidence for the USA (1958–2006)," MPRA Paper 90145, University Library of Munich, Germany.
    4. Jean-Marie Dufour & David Tessier, 2006. "Short-Run and Long-Run Causality between Monetary Policy Variables and Stock Prices," Staff Working Papers 06-39, Bank of Canada.
    5. Cerqueira, Vinícius Dos Santos & Ribeiro, Márcio Bruno & Martinez, Thiago Sevilhano, 2014. "Propagação Assimétrica de Choques Monetários na Economia Brasileira: Evidências com base em um modelo vetorial não-linear de transição suave," Revista Brasileira de Economia - RBE, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil), vol. 68(1), April.
    6. George Athanasopoulos & Heather M. Anderson & Farshid Vahid, 2007. "Nonlinear autoregressive leading indicator models of output in G-7 countries," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(1), pages 63-87.
    7. Andersson, Magnus & D'Agostino, Antonello, 2008. "Are sectoral stock prices useful for predicting euro area GDP?," Research Technical Papers 2/RT/08, Central Bank of Ireland.
    8. Henri Nyberg, 2010. "Dynamic probit models and financial variables in recession forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(1-2), pages 215-230.
    9. Anna Florio, 2005. "Asymmetric monetary policy: empirical evidence for Italy," Applied Economics, Taylor & Francis Journals, vol. 37(7), pages 751-764.
    10. Ahmed, Habib, 1998. "Responses in output to monetary shocks and the interest rate: a rational expectations model with working capital," Economics Letters, Elsevier, vol. 61(3), pages 351-358, December.
    11. repec:fgv:epgrbe:v:68:n:1:a:2 is not listed on IDEAS
    12. Jon Faust & John S. Irons, 1996. "Money, politics and the post-war business cycle," International Finance Discussion Papers 572, Board of Governors of the Federal Reserve System (U.S.).
    13. Yimin Xu & Jakob de Haan, 2016. "Does the Fed's unconventional monetary policy weaken the link between the financial and the real sector?," DNB Working Papers 529, Netherlands Central Bank, Research Department.
    14. María Clara Aristizábal Restrepo, 2006. "Evaluación asimétrica de una red neuronal artificial:Aplicación al caso de la inflación en Colombia," Borradores de Economia 377, Banco de la Republica de Colombia.
    15. João C. Claudio & Katja Heinisch & Oliver Holtemöller, 2020. "Nowcasting East German GDP growth: a MIDAS approach," Empirical Economics, Springer, vol. 58(1), pages 29-54, January.
    16. Douglas Sutherland & Peter Hoeller & Balázs Égert & Oliver Röhn, 2010. "Counter-cyclical Economic Policy," OECD Economics Department Working Papers 760, OECD Publishing.
    17. Soumya Kanti Ghosh & Hiranya K. Nath, 2021. "What determines private and household savings in India?," Working Papers 2101, Sam Houston State University, Department of Economics and International Business.
    18. Tomohiro Ando & Ruey S. Tsay, 2009. "Model selection for generalized linear models with factor‐augmented predictors," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 25(3), pages 207-235, May.
    19. Galvão, Ana Beatriz, 2013. "Changes in predictive ability with mixed frequency data," International Journal of Forecasting, Elsevier, vol. 29(3), pages 395-410.
    20. repec:eid:wpaper:4/09 is not listed on IDEAS
    21. González-Rivera, Gloria & Sun, Yingying, 2017. "Density forecast evaluation in unstable environments," International Journal of Forecasting, Elsevier, vol. 33(2), pages 416-432.

    More about this item

    Keywords

    Red neuronal artificial; no linealidad; PIB; Rolling de pronóstico; evaluación de pronóstico.;
    All these keywords.

    JEL classification:

    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E17 - Macroeconomics and Monetary Economics - - General Aggregative Models - - - Forecasting and Simulation: Models and Applications
    • E23 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Production

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:col:000094:005934. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Clorith Angélica Bahos Olivera (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.