IDEAS home Printed from https://ideas.repec.org/p/dnb/dnbwpp/004.html
   My bibliography  Save this paper

On the predictability of GDP data revisions in the Netherlands

Author

Listed:
  • Olivier Roodenburg

Abstract

The first part of this paper is based on a study by Faust, Rogers and Wright (2004). They found someevidence of predictability of GDP revisions for the G-7 countrie s, especially for the UK, Italy and Japan. In this paper we investigate the quality of the first Dutch GDP releases by using the same technique. Our findings suggest that Dutch GDP revisions are also predictable to some extent. These results are strengthened when applying the more general state-space estimation procedure. The statespace model is used to estimate the final or unobserved data, given the preliminary or observed data.

Suggested Citation

  • Olivier Roodenburg, 2004. "On the predictability of GDP data revisions in the Netherlands," DNB Working Papers 004, Netherlands Central Bank, Research Department.
  • Handle: RePEc:dnb:dnbwpp:004
    as

    Download full text from publisher

    File URL: https://www.dnb.nl/binaries/Working%20Paper%20%204-2004_tcm46-146661.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Kavajecz, Kenneth & Collins, Sean, 1995. "Rationality of Preliminary Money Stock Estimates," The Review of Economics and Statistics, MIT Press, vol. 77(1), pages 32-41, February.
    2. N. Gregory Mankiw & Matthew D. Shapiro, 1986. "News or Noise? An Analysis of GNP Revisions," NBER Working Papers 1939, National Bureau of Economic Research, Inc.
    3. Howrey, E Philip, 1978. "The Use of Preliminary Data in Econometric Forecasting," The Review of Economics and Statistics, MIT Press, vol. 60(2), pages 193-200, May.
    4. Robert York & Paul Atkinson, 1997. "The Reliability of Quarterly National Accounts in Seven Major Countries: A User's Perspective," OECD Economics Department Working Papers 171, OECD Publishing.
    5. Swanson, Norman R. & van Dijk, Dick, 2006. "Are Statistical Reporting Agencies Getting It Right? Data Rationality and Business Cycle Asymmetry," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 24-42, January.
    6. Faust, Jon & Rogers, John H & Wright, Jonathan H, 2005. "News and Noise in G-7 GDP Announcements," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 37(3), pages 403-419, June.
    7. Howrey, E Philip, 1984. "Data Revision, Reconstruction, and Prediction: An Application to Inventory Investment," The Review of Economics and Statistics, MIT Press, vol. 66(3), pages 386-393, August.
    8. William Conrad & Carol Corrado, 1978. "Applications of the Kalman filter to revisions in monthly retail sales estimates," Special Studies Papers 125, Board of Governors of the Federal Reserve System (U.S.).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Golinelli, Roberto & Parigi, Giuseppe, 2005. "Short-Run Italian GDP Forecasting and Real-Time Data," CEPR Discussion Papers 5302, C.E.P.R. Discussion Papers.
    2. Bogoev, Jane & Ramadani, Gani, 2012. "GDP Data Revisions in Macedonia – Is There Any Systematic Pattern?," MPRA Paper 70170, University Library of Munich, Germany, revised Sep 2014.

    More about this item

    Keywords

    Preliminary data; final data; revision; GDP; state-space model; Kalman filter;

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:dnb:dnbwpp:004. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Rob Vet). General contact details of provider: http://edirc.repec.org/data/dnbgvnl.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.