IDEAS home Printed from https://ideas.repec.org/a/eee/jmacro/v60y2019icp396-407.html
   My bibliography  Save this article

Testing for news and noise in non-stationary time series subject to multiple historical revisions

Author

Listed:
  • Hecq, Alain
  • Jacobs, Jan P.A.M.
  • Stamatogiannis, Michalis P.

Abstract

This paper focuses on testing non-stationary real-time data for forecastability, i.e., whether data revisions reduce noise or are news, by putting data releases in vector-error correction forms. To deal with historical revisions which affect the whole vintage of time series due to redefinitions, methodological innovations etc., we employ the recently developed impulse indicator saturation approach, which involves potentially adding an indicator dummy for each observation to the model. We illustrate our procedures with the U.S. real GNP/GDP series of the Federal Reserve Bank of Philadelphia and find that revisions to this series neither reduce noise nor can be considered as news.

Suggested Citation

  • Hecq, Alain & Jacobs, Jan P.A.M. & Stamatogiannis, Michalis P., 2019. "Testing for news and noise in non-stationary time series subject to multiple historical revisions," Journal of Macroeconomics, Elsevier, vol. 60(C), pages 396-407.
  • Handle: RePEc:eee:jmacro:v:60:y:2019:i:c:p:396-407
    DOI: 10.1016/j.jmacro.2019.03.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016407041830291X
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Dennis J. Fixler & Jeremy J. Nalewaik, 2007. "News, noise, and estimates of the \"true\" unobserved state of the economy," Finance and Economics Discussion Series 2007-34, Board of Governors of the Federal Reserve System (U.S.).
    2. Michael P. Clements & Ana Beatriz Galvão, 2013. "Real‐Time Forecasting Of Inflation And Output Growth With Autoregressive Models In The Presence Of Data Revisions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(3), pages 458-477, April.
    3. Götz, Thomas B. & Hecq, Alain & Urbain, Jean-Pierre, 2016. "Combining forecasts from successive data vintages: An application to U.S. growth," International Journal of Forecasting, Elsevier, vol. 32(1), pages 61-74.
    4. Jacob A. Mincer & Victor Zarnowitz, 1969. "The Evaluation of Economic Forecasts," NBER Chapters, in: Economic Forecasts and Expectations: Analysis of Forecasting Behavior and Performance, pages 3-46, National Bureau of Economic Research, Inc.
    5. S. Borağan Aruoba, 2008. "Data Revisions Are Not Well Behaved," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 40(2‐3), pages 319-340, March.
    6. Athanasios Orphanides & Simon van Norden, 2002. "The Unreliability of Output-Gap Estimates in Real Time," The Review of Economics and Statistics, MIT Press, vol. 84(4), pages 569-583, November.
    7. N. Gregory Mankiw & Matthew D. Shapiro, 1986. "News or Noise? An Analysis of GNP Revisions," NBER Working Papers 1939, National Bureau of Economic Research, Inc.
    8. Jacobs, Jan P.A.M. & van Norden, Simon, 2016. "Why are initial estimates of productivity growth so unreliable?," Journal of Macroeconomics, Elsevier, vol. 47(PB), pages 200-213.
    9. Alastair Cunningham & Jana Eklund & Chris Jeffery & George Kapetanios & Vincent Labhard, 2009. "A State Space Approach to Extracting the Signal From Uncertain Data," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(2), pages 173-180, March.
    10. Dean Croushore, 2011. "Frontiers of Real-Time Data Analysis," Journal of Economic Literature, American Economic Association, vol. 49(1), pages 72-100, March.
    11. Urbain, Jean-Pierre, 1992. "On Weak Exogeneity in Error Correction Models," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 54(2), pages 187-207, May.
    12. Andrew J. Patton & Allan Timmermann, 2011. "Predictability of Output Growth and Inflation: A Multi-Horizon Survey Approach," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(3), pages 397-410, July.
    13. Gonzalo, Jesus & Granger, Clive W J, 1995. "Estimation of Common Long-Memory Components in Cointegrated Systems," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(1), pages 27-35, January.
    14. repec:taf:jnlbes:v:30:y:2012:i:2:p:173-180 is not listed on IDEAS
    15. Neil Ericsson & Erica Reisman, 2012. "Evaluating a Global Vector Autoregression for Forecasting," International Advances in Economic Research, Springer;International Atlantic Economic Society, vol. 18(3), pages 247-258, August.
    16. Castle, Jennifer L. & Doornik, Jurgen A. & Hendry, David F., 2012. "Model selection when there are multiple breaks," Journal of Econometrics, Elsevier, vol. 169(2), pages 239-246.
    17. Jacobs, Jan P.A.M. & van Norden, Simon, 2011. "Modeling data revisions: Measurement error and dynamics of "true" values," Journal of Econometrics, Elsevier, vol. 161(2), pages 101-109, April.
    18. N. Kundan Kishor & Evan F. Koenig, 2009. "VAR Estimation and Forecasting When Data Are Subject to Revision," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(2), pages 181-190, July.
    19. Carlos Santos & David Hendry & Soren Johansen, 2008. "Automatic selection of indicators in a fully saturated regression," Computational Statistics, Springer, vol. 23(2), pages 317-335, April.
    20. Swanson, Norman R. & van Dijk, Dick, 2006. "Are Statistical Reporting Agencies Getting It Right? Data Rationality and Business Cycle Asymmetry," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 24-42, January.
    21. Urbain, Jean-Pierre, 1995. "Partial versus full system modelling of cointegrated systems an empirical illustration," Journal of Econometrics, Elsevier, vol. 69(1), pages 177-210, September.
    22. David F. Hendry & Carlos Santos, 2005. "Regression Models with Data‐based Indicator Variables," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 67(5), pages 571-595, October.
    23. Anthony Garratt & Kevin Lee & Emi Mise & Kalvinder Shields, 2008. "Real-Time Representations of the Output Gap," The Review of Economics and Statistics, MIT Press, vol. 90(4), pages 792-804, November.
    24. Jacob A. Mincer, 1969. "Economic Forecasts and Expectations: Analysis of Forecasting Behavior and Performance," NBER Books, National Bureau of Economic Research, Inc, number minc69-1, January.
    25. repec:kap:iaecre:v:18:y:2012:i:3:p:247-258 is not listed on IDEAS
    26. Thomas A. Knetsch & Hans‐Eggert Reimers, 2009. "Dealing with Benchmark Revisions in Real‐Time Data: The Case of German Production and Orders Statistics," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 71(2), pages 209-235, April.
    27. Faust, Jon & Rogers, John H & Wright, Jonathan H, 2005. "News and Noise in G-7 GDP Announcements," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 37(3), pages 403-419, June.
    28. repec:taf:jnlbes:v:30:y:2012:i:2:p:181-190 is not listed on IDEAS
    29. Patterson, K. D., 2003. "Exploiting information in vintages of time-series data," International Journal of Forecasting, Elsevier, vol. 19(2), pages 177-197.
    30. K. D. Patterson, 2002. "Modelling the data measurement process for the index of production," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 165(2), pages 279-296, June.
    31. de Jong, Piet, 1987. "Rational Economic Data Revisions," Journal of Business & Economic Statistics, American Statistical Association, vol. 5(4), pages 539-548, October.
    32. Johansen, Soren, 1995. "Likelihood-Based Inference in Cointegrated Vector Autoregressive Models," OUP Catalogue, Oxford University Press, number 9780198774501.
    33. Garratt, Anthony & Lee, Kevin & Mise, Emi & Shields, Kalvinder, 2009. "Real time representation of the UK output gap in the presence of model uncertainty," International Journal of Forecasting, Elsevier, vol. 25(1), pages 81-102.
    34. Patterson, K. D., 2000. "Which vintage of data to use when there are multiple vintages of data?: Cointegration, weak exogeneity and common factors," Economics Letters, Elsevier, vol. 69(2), pages 115-121, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. M. Mogliani & T. Ferrière, 2016. "Rationality of announcements, business cycle asymmetry, and predictability of revisions. The case of French GDP," Working papers 600, Banque de France.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jacobs, Jan P.A.M. & van Norden, Simon, 2011. "Modeling data revisions: Measurement error and dynamics of "true" values," Journal of Econometrics, Elsevier, vol. 161(2), pages 101-109, April.
    2. Michael P. Clements, 2017. "Assessing Macro Uncertainty in Real-Time When Data Are Subject To Revision," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(3), pages 420-433, July.
    3. M. Mogliani & T. Ferrière, 2016. "Rationality of announcements, business cycle asymmetry, and predictability of revisions. The case of French GDP," Working papers 600, Banque de France.
    4. Jan P.A.M. Jacobs & Samad Sarferaz & Simon van Norden & Jan-Egbert Sturm, 2013. "Modeling Multivariate Data Revisions," CIRANO Working Papers 2013s-44, CIRANO.
    5. Galvão, Ana Beatriz, 2017. "Data revisions and DSGE models," Journal of Econometrics, Elsevier, vol. 196(1), pages 215-232.
    6. Clements, Michael P. & Beatriz Galvao, Ana, 2010. "Real-time Forecasting of Inflation and Output Growth in the Presence of Data Revisions," Economic Research Papers 270771, University of Warwick - Department of Economics.
    7. Jennifer Castle & David Hendry, 2012. "Forecasting by factors, by variables, or both?," Economics Series Working Papers 600, University of Oxford, Department of Economics.
    8. Dean Croushore, 2011. "Frontiers of Real-Time Data Analysis," Journal of Economic Literature, American Economic Association, vol. 49(1), pages 72-100, March.
    9. Emilia Tomczyk, 2013. "End of sample vs. real time data: perspectives for analysis of expectations," Working Papers 68, Department of Applied Econometrics, Warsaw School of Economics.
    10. Carlo Altavilla & Matteo Ciccarelli, 2011. "Monetary Policy Analysis in Real-Time. Vintage Combination from a Real-Time Dataset," CESifo Working Paper Series 3372, CESifo.
    11. Jacobs, Jan P.A.M. & van Norden, Simon, 2016. "Why are initial estimates of productivity growth so unreliable?," Journal of Macroeconomics, Elsevier, vol. 47(PB), pages 200-213.
    12. Richard G. Anderson & Charles S. Gascon, 2009. "Estimating U.S. output growth with vintage data in a state-space framework," Review, Federal Reserve Bank of St. Louis, vol. 91(Jul), pages 349-370.
    13. Dean Croushore, 2009. "Commentary on Estimating U.S. output growth with vintage data in a state-space framework," Review, Federal Reserve Bank of St. Louis, vol. 91(Jul), pages 371-382.
    14. Sinclair, Tara M. & Stekler, H.O., 2013. "Examining the quality of early GDP component estimates," International Journal of Forecasting, Elsevier, vol. 29(4), pages 736-750.
    15. Michael P. Clements, 2014. "Anticipating Early Data Revisions to US GDP and the Effects of Releases on Equity Markets," ICMA Centre Discussion Papers in Finance icma-dp2014-06, Henley Business School, Reading University.
    16. Strohsal, Till & Wolf, Elias, 2020. "Data revisions to German national accounts: Are initial releases good nowcasts?," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1252-1259.
    17. Carriero, Andrea & Clements, Michael P. & Galvão, Ana Beatriz, 2015. "Forecasting with Bayesian multivariate vintage-based VARs," International Journal of Forecasting, Elsevier, vol. 31(3), pages 757-768.
    18. Michael P. Clements & Ana Beatriz Galvão, 2011. "Improving Real-time Estimates of Output Gaps and Inflation Trends with Multiple-vintage Models," Working Papers 678, Queen Mary University of London, School of Economics and Finance.
    19. Maximo Camacho & Gabriel Perez-Quiros, 2010. "Introducing the euro-sting: Short-term indicator of euro area growth," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 663-694.
    20. Valentina Raponi & Cecilia Frale, 2014. "Revisions in official data and forecasting," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(3), pages 451-472, August.

    More about this item

    Keywords

    Data revision; Cointegration; News-noise tests; Outlier detection;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C82 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Methodology for Collecting, Estimating, and Organizing Macroeconomic Data; Data Access
    • E01 - Macroeconomics and Monetary Economics - - General - - - Measurement and Data on National Income and Product Accounts and Wealth; Environmental Accounts

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmacro:v:60:y:2019:i:c:p:396-407. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: http://www.elsevier.com/locate/inca/622617 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.