IDEAS home Printed from
MyIDEAS: Login to save this article

Identifying business cycle turning points with sequential Monte Carlo methods: an online and real-time application to the Euro area

  • Monica Billio
  • Roberto Casarin

We propose a new approach for detecting turning points and forecasting the level of economic activity in the business cycle. We make use of coincident indicators and of nonlinear and non-Gaussian latent variable models. We thus combine the ability of nonlinear models to capture the asymmetric features of the business cycle with information on the current state of the economy provided by coincident indicators. Our approach relies upon sequential Monte Carlo filtering techniques applied to time-nonhomogenous Markov-switching models. The transition probabilities are driven by a beta-distributed stochastic component and by a set of exogenous variables. We illustrate, in a full Bayesian and online context, the effectiveness of the methodology. We also measure its ability to identify turning points and to forecast the European business cycle on both realtime and last-revised data. Copyright © 2009 John Wiley & Sons, Ltd.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
File Function: Link to full text; subscription required
Download Restriction: no

Article provided by John Wiley & Sons, Ltd. in its journal Journal of Forecasting.

Volume (Year): 29 (2010)
Issue (Month): 1-2 ()
Pages: 145-167

in new window

Handle: RePEc:jof:jforec:v:29:y:2010:i:1-2:p:145-167
Contact details of provider: Web page:

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:jof:jforec:v:29:y:2010:i:1-2:p:145-167. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing)

or (Christopher F. Baum)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.