IDEAS home Printed from https://ideas.repec.org/a/jof/jforec/v29y2010i1-2p145-167.html
   My bibliography  Save this article

Identifying business cycle turning points with sequential Monte Carlo methods: an online and real-time application to the Euro area

Author

Listed:
  • Monica Billio
  • Roberto Casarin

Abstract

We propose a new approach for detecting turning points and forecasting the level of economic activity in the business cycle. We make use of coincident indicators and of nonlinear and non-Gaussian latent variable models. We thus combine the ability of nonlinear models to capture the asymmetric features of the business cycle with information on the current state of the economy provided by coincident indicators. Our approach relies upon sequential Monte Carlo filtering techniques applied to time-nonhomogenous Markov-switching models. The transition probabilities are driven by a beta-distributed stochastic component and by a set of exogenous variables. We illustrate, in a full Bayesian and online context, the effectiveness of the methodology. We also measure its ability to identify turning points and to forecast the European business cycle on both realtime and last-revised data. Copyright © 2009 John Wiley & Sons, Ltd.

Suggested Citation

  • Monica Billio & Roberto Casarin, 2010. "Identifying business cycle turning points with sequential Monte Carlo methods: an online and real-time application to the Euro area," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(1-2), pages 145-167.
  • Handle: RePEc:jof:jforec:v:29:y:2010:i:1-2:p:145-167 DOI: 10.1002/for.1148
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1002/for.1148
    File Function: Link to full text; subscription required
    Download Restriction: no

    References listed on IDEAS

    as
    1. Pierre Del Moral & Arnaud Doucet & Ajay Jasra, 2006. "Sequential Monte Carlo samplers," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(3), pages 411-436.
    2. Potter, Simon M, 1995. "A Nonlinear Approach to US GNP," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 10(2), pages 109-125, April-Jun.
    3. Sichel, Daniel E, 1991. "Business Cycle Duration Dependence: A Parametric Approach," The Review of Economics and Statistics, MIT Press, vol. 73(2), pages 254-260, May.
    4. Watson, Mark W, 1994. "Business-Cycle Durations and Postwar Stabilization of the U.S. Economy," American Economic Review, American Economic Association, vol. 84(1), pages 24-46, March.
    5. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    6. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178.
    7. Diebold, Francis X & Rudebusch, Glenn D, 1996. "Measuring Business Cycles: A Modern Perspective," The Review of Economics and Statistics, MIT Press, vol. 78(1), pages 67-77, February.
    8. Jasra, Ajay & Doucet, Arnaud & Stephens, David A. & Holmes, Christopher C., 2008. "Interacting sequential Monte Carlo samplers for trans-dimensional simulation," Computational Statistics & Data Analysis, Elsevier, vol. 52(4), pages 1765-1791, January.
    9. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    10. Chang-Jin Kim & Christian J. Murray, 2002. "Permanent and transitory components of recessions," Empirical Economics, Springer, vol. 27(2), pages 163-183.
    11. Harding, Don & Pagan, Adrian, 2002. "Dissecting the cycle: a methodological investigation," Journal of Monetary Economics, Elsevier, vol. 49(2), pages 365-381, March.
    12. Chauvet, Marcelle & Piger, Jeremy, 2008. "A Comparison of the Real-Time Performance of Business Cycle Dating Methods," Journal of Business & Economic Statistics, American Statistical Association, pages 42-49.
    13. Massimiliano Caporin & Domenico Sartore, 2006. "Methodological aspects of time series back-calculation," Working Papers 2006_56, Department of Economics, University of Venice "Ca' Foscari".
    14. Goldfeld, Stephen M. & Quandt, Richard E., 1973. "A Markov model for switching regressions," Journal of Econometrics, Elsevier, vol. 1(1), pages 3-15, March.
    15. Jasra, Ajay & Doucet, Arnaud, 2008. "Stability of sequential Monte Carlo samplers via the Foster-Lyapunov condition," Statistics & Probability Letters, Elsevier, vol. 78(17), pages 3062-3069, December.
    16. Francis X. Diebold & Glenn Rudebusch & Daniel Sichel, 1993. "Further Evidence on Business-Cycle Duration Dependence," NBER Chapters,in: Business Cycles, Indicators and Forecasting, pages 255-284 National Bureau of Economic Research, Inc.
    17. Kim, Chang-Jin, 1994. "Dynamic linear models with Markov-switching," Journal of Econometrics, Elsevier, vol. 60(1-2), pages 1-22.
    18. Jacques Anas & Monica Billio & Laurent Ferrara & Gian Luigi Mazzi, 2008. "A System For Dating And Detecting Turning Points In The Euro Area," Manchester School, University of Manchester, vol. 76(5), pages 549-577, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Billio, Monica & Casarin, Roberto & Ravazzolo, Francesco & van Dijk, Herman K., 2013. "Time-varying combinations of predictive densities using nonlinear filtering," Journal of Econometrics, Elsevier, vol. 177(2), pages 213-232.
    2. Billio, Monica & Casarin, Roberto & Ravazzolo, Francesco & van Dijk, Herman K., 2012. "Combination schemes for turning point predictions," The Quarterly Review of Economics and Finance, Elsevier, vol. 52(4), pages 402-412.
    3. Sylvia Kaufmann, 2014. "K-state switching models with time-varying transition distributions – Does credit growth signal stronger effects of variables on inflation?," Working Papers 14.04, Swiss National Bank, Study Center Gerzensee.
    4. Singh, Tarlok, 2014. "On the regime-switching and asymmetric dynamics of economic growth in the OECD countries," Research in Economics, Elsevier, vol. 68(2), pages 169-192.
    5. Monica Billio & Roberto Casarin & Francesco Ravazzolo & Herman K. van Dijk, 2011. "Combining Predictive Densities using Nonlinear Filtering with Applications to US Economics Data," Tinbergen Institute Discussion Papers 11-172/4, Tinbergen Institute.
    6. Peter Martey Addo & Monica Billio & Dominique Guegan, 2013. "Turning point chronology for the Euro-Zone: A Distance Plot Approach," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00803457, HAL.
    7. Lux, Thomas, 2017. "Estimation of agent-based models using sequential Monte Carlo methods," Economics Working Papers 2017-07, Christian-Albrechts-University of Kiel, Department of Economics.
    8. Aastveit, Knut Are & Trovik, Tørres, 2014. "Estimating the output gap in real time: A factor model approach," The Quarterly Review of Economics and Finance, Elsevier, vol. 54(2), pages 180-193.
    9. Monica Billio & Roberto Casarin & Francesco Ravazzolo & Herman K. van Dijk, 2010. "Combining predictive densities using Bayesian filtering with applications to US economics data," Working Paper 2010/29, Norges Bank.
    10. Billio Monica & Casarin Roberto, 2011. "Beta Autoregressive Transition Markov-Switching Models for Business Cycle Analysis," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 15(4), pages 1-32, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jof:jforec:v:29:y:2010:i:1-2:p:145-167. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.