IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this article

Improving discrimination in data envelopment analysis: PCA-DEA or variable reduction

  • Adler, Nicole
  • Yazhemsky, Ekaterina
Registered author(s):

    Within the data envelopment analysis context, problems of discrimination between efficient and inefficient decision-making units often arise, particularly if there are a relatively large number of variables with respect to observations. This paper applies Monte Carlo simulation to generalize and compare two discrimination improving methods; principal component analysis applied to data envelopment analysis (PCA-DEA) and variable reduction based on partial covariance (VR). Performance criteria are based on the percentage of observations incorrectly classified; efficient decision-making units mistakenly defined as inefficient and inefficient units defined as efficient. A trade-off was observed with both methods improving discrimination by reducing the probability of the latter error at the expense of a small increase in the probability of the former error. A comparison of the methodologies demonstrates that PCA-DEA provides a more powerful tool than VR with consistently more accurate results. PCA-DEA is applied to all basic DEA models and guidelines for its application are presented in order to minimize misclassification and prove particularly useful when analyzing relatively small datasets, removing the need for additional preference information.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(09)00229-X
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal European Journal of Operational Research.

    Volume (Year): 202 (2010)
    Issue (Month): 1 (April)
    Pages: 273-284

    as
    in new window

    Handle: RePEc:eee:ejores:v:202:y:2010:i:1:p:273-284
    Contact details of provider: Web page: http://www.elsevier.com/locate/eor

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Martin G. Kocher & Mikulas Luptacik & Matthias Sutter, 2001. "Measuring Productivity of Research in Economics. A Cross-Country Study Using DEA," Department of Economics Working Papers wuwp077, Vienna University of Economics and Business, Department of Economics.
    2. Lidia Angulo-Meza & Marcos Lins, 2002. "Review of Methods for Increasing Discrimination in Data Envelopment Analysis," Annals of Operations Research, Springer, vol. 116(1), pages 225-242, October.
    3. Colbert, Amy & Levary, Reuven R. & Shaner, Michael C., 2000. "Determining the relative efficiency of MBA programs using DEA," European Journal of Operational Research, Elsevier, vol. 125(3), pages 656-669, September.
    4. Banker, Rajiv D. & Gadh, Vandana M. & Gorr, Wilpen L., 1993. "A Monte Carlo comparison of two production frontier estimation methods: Corrected ordinary least squares and data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 67(3), pages 332-343, June.
    5. Charnes, A. & Cooper, W. W. & Golany, B. & Seiford, L. & Stutz, J., 1985. "Foundations of data envelopment analysis for Pareto-Koopmans efficient empirical production functions," Journal of Econometrics, Elsevier, vol. 30(1-2), pages 91-107.
    6. Friedman, Lea & Sinuany-Stern, Zilla, 1997. "Scaling units via the canonical correlation analysis in the DEA context," European Journal of Operational Research, Elsevier, vol. 100(3), pages 629-637, August.
    7. Kittelsen, S.A.C., 1993. "Stepwise DEA; Choosing Variables for Measuring Technical Efficiency in Norwegian Electricity Distribution," Memorandum 06/1993, Oslo University, Department of Economics.
    8. Zhu, Joe, 1998. "Data envelopment analysis vs. principal component analysis: An illustrative study of economic performance of Chinese cities," European Journal of Operational Research, Elsevier, vol. 111(1), pages 50-61, November.
    9. Adler, Nicole & Friedman, Lea & Sinuany-Stern, Zilla, 2002. "Review of ranking methods in the data envelopment analysis context," European Journal of Operational Research, Elsevier, vol. 140(2), pages 249-265, July.
    10. Dyson, R. G. & Allen, R. & Camanho, A. S. & Podinovski, V. V. & Sarrico, C. S. & Shale, E. A., 2001. "Pitfalls and protocols in DEA," European Journal of Operational Research, Elsevier, vol. 132(2), pages 245-259, July.
    11. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    12. R. Allen & A. Athanassopoulos & R.G. Dyson & E. Thanassoulis, 1997. "Weights restrictions and value judgements in Data Envelopment Analysis: Evolution, development and future directions," Annals of Operations Research, Springer, vol. 73(0), pages 13-34, October.
    13. Inmaculada Sirvent & José L. Ruiz & Fernando Borrás & Jesús T. Pastor, 2005. "A Monte Carlo Evaluation Of Several Tests For The Selection Of Variables In Dea Models," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 4(03), pages 325-343.
    14. Jenkins, Larry & Anderson, Murray, 2003. "A multivariate statistical approach to reducing the number of variables in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 147(1), pages 51-61, May.
    15. Kneip, Alois & Park, Byeong U. & Simar, L opold, 1998. "A Note On The Convergence Of Nonparametric Dea Estimators For Production Efficiency Scores," Econometric Theory, Cambridge University Press, vol. 14(06), pages 783-793, December.
    16. Victor Podinovski & Emmanuel Thanassoulis, 2007. "Improving discrimination in data envelopment analysis: some practical suggestions," Journal of Productivity Analysis, Springer, vol. 28(1), pages 117-126, October.
    17. Hokkanen, Joonas & Salminen, Pekka, 1997. "Choosing a solid waste management system using multicriteria decision analysis," European Journal of Operational Research, Elsevier, vol. 98(1), pages 19-36, April.
    18. Léopold Simar & Paul Wilson, 2000. "Statistical Inference in Nonparametric Frontier Models: The State of the Art," Journal of Productivity Analysis, Springer, vol. 13(1), pages 49-78, January.
    19. O. B. Olesen & N. C. Petersen, 1996. "Indicators of Ill-Conditioned Data Sets and Model Misspecification in Data Envelopment Analysis: An Extended Facet Approach," Management Science, INFORMS, vol. 42(2), pages 205-219, February.
    20. Per Andersen & Niels Christian Petersen, 1993. "A Procedure for Ranking Efficient Units in Data Envelopment Analysis," Management Science, INFORMS, vol. 39(10), pages 1261-1264, October.
    21. Peter Smith, 1997. "Model misspecification in Data Envelopment Analysis," Annals of Operations Research, Springer, vol. 73(0), pages 233-252, October.
    22. Indranil Bardhan & William Cooper & Subal Kumbhakar, 1998. "A Simulation Study of Joint Uses of Data Envelopment Analysis and Statistical Regressions for Production Function Estimation and Efficiency Evaluation," Journal of Productivity Analysis, Springer, vol. 9(3), pages 249-278, March.
    23. Adler, Nicole & Golany, Boaz, 2001. "Evaluation of deregulated airline networks using data envelopment analysis combined with principal component analysis with an application to Western Europe," European Journal of Operational Research, Elsevier, vol. 132(2), pages 260-273, July.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:202:y:2010:i:1:p:273-284. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.