IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/64120.html
   My bibliography  Save this paper

More is better than one: the impact of different numbers of input aggregators in technical efficiency estimation

Author

Listed:
  • Aldanondo, Ana M.
  • Casasnovas, Valero L.

Abstract

The results of an experiment with simulated data show that combining inputs with different criteria (as cost, material inputs aggregates and other) increases the accuracy of the Data Envelopment Analysis (DEA) technical efficiency estimator in data sets with dimensionality problems. The positive impact of this approach surpasses that of reducing the number of variables, since replacement of the original inputs with an equal number of aggregates improves DEA performance in a wide range of cases.

Suggested Citation

  • Aldanondo, Ana M. & Casasnovas, Valero L., 2015. "More is better than one: the impact of different numbers of input aggregators in technical efficiency estimation," MPRA Paper 64120, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:64120
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/64120/1/MPRA_paper_64120.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Léopold Simar & Paul W. Wilson, 2015. "Statistical Approaches for Non-parametric Frontier Models: A Guided Tour," International Statistical Review, International Statistical Institute, vol. 83(1), pages 77-110, April.
    2. A. M. Aldanondo & V. L. Casasnovas, 2015. "Input aggregation bias in technical efficiency with multiple criteria analysis," Applied Economics Letters, Taylor & Francis Journals, vol. 22(6), pages 430-435, April.
    3. Charnes, A. & Cooper, W. W. & Huang, Z. M. & Sun, D. B., 1990. "Polyhedral Cone-Ratio DEA Models with an illustrative application to large commercial banks," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 73-91.
    4. Loren Tauer, 2001. "Input aggregation and computed technical efficiency," Applied Economics Letters, Taylor & Francis Journals, vol. 8(5), pages 295-297.
    5. Adler, Nicole & Yazhemsky, Ekaterina, 2010. "Improving discrimination in data envelopment analysis: PCA-DEA or variable reduction," European Journal of Operational Research, Elsevier, vol. 202(1), pages 273-284, April.
    6. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    7. Finn Førsund, 2013. "Weight restrictions in DEA: misplaced emphasis?," Journal of Productivity Analysis, Springer, vol. 40(3), pages 271-283, December.
    8. R. Allen & A. Athanassopoulos & R.G. Dyson & E. Thanassoulis, 1997. "Weights restrictions and value judgements in Data Envelopment Analysis: Evolution, development and future directions," Annals of Operations Research, Springer, vol. 73(0), pages 13-34, October.
    9. Peter Smith, 1997. "Model misspecification in Data Envelopment Analysis," Annals of Operations Research, Springer, vol. 73(0), pages 233-252, October.
    10. Allen, R. & Thanassoulis, E., 2004. "Improving envelopment in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 154(2), pages 363-379, April.
    11. Adler, Nicole & Golany, Boaz, 2001. "Evaluation of deregulated airline networks using data envelopment analysis combined with principal component analysis with an application to Western Europe," European Journal of Operational Research, Elsevier, vol. 132(2), pages 260-273, July.
    12. Victor Podinovski & Emmanuel Thanassoulis, 2007. "Improving discrimination in data envelopment analysis: some practical suggestions," Journal of Productivity Analysis, Springer, vol. 28(1), pages 117-126, October.
    13. Rolf Fare & Valentin Zelenyuk, 2002. "Input aggregation and technical efficiency," Applied Economics Letters, Taylor & Francis Journals, vol. 9(10), pages 635-636.
    14. Wilson, Paul W., 2008. "FEAR: A software package for frontier efficiency analysis with R," Socio-Economic Planning Sciences, Elsevier, vol. 42(4), pages 247-254, December.
    15. Banker, Rajiv D. & Gadh, Vandana M. & Gorr, Wilpen L., 1993. "A Monte Carlo comparison of two production frontier estimation methods: Corrected ordinary least squares and data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 67(3), pages 332-343, June.
    16. Rolf Fare & Shawna Grosskopf & Valentin Zelenyuk, 2004. "Aggregation bias and its bounds in measuring technical efficiency," Applied Economics Letters, Taylor & Francis Journals, vol. 11(10), pages 657-660.
    17. O. B. Olesen & N. C. Petersen, 1996. "Indicators of Ill-Conditioned Data Sets and Model Misspecification in Data Envelopment Analysis: An Extended Facet Approach," Management Science, INFORMS, vol. 42(2), pages 205-219, February.
    18. Banker, Rajiv D & Maindiratta, Ajay, 1988. "Nonparametric Analysis of Technical and Allocative Efficiencies in Production," Econometrica, Econometric Society, vol. 56(6), pages 1315-1332, November.
    19. Varian, Hal R, 1984. "The Nonparametric Approach to Production Analysis," Econometrica, Econometric Society, vol. 52(3), pages 579-597, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aldanondo, Ana M. & Casasnovas, Valero L. & Almansa, M. Carmen, 2016. "Cost-constrained measures of environmental efficiency: a material balance approach," MPRA Paper 72490, University Library of Munich, Germany.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aldanondo, Ana M. & Casasnovas, Valero L., 2016. "A note on the impact of multiple input aggregators in technical efficiency estimation," MPRA Paper 75290, University Library of Munich, Germany.
    2. Adler, Nicole & Yazhemsky, Ekaterina, 2010. "Improving discrimination in data envelopment analysis: PCA-DEA or variable reduction," European Journal of Operational Research, Elsevier, vol. 202(1), pages 273-284, April.
    3. Zelenyuk, Valentin, 2020. "Aggregation of inputs and outputs prior to Data Envelopment Analysis under big data," European Journal of Operational Research, Elsevier, vol. 282(1), pages 172-187.
    4. Valentin Zelenyuk, 2019. "Data Envelopment Analysis and Business Analytics: The Big Data Challenges and Some Solutions," CEPA Working Papers Series WP072019, School of Economics, University of Queensland, Australia.
    5. Finn Førsund, 2013. "Weight restrictions in DEA: misplaced emphasis?," Journal of Productivity Analysis, Springer, vol. 40(3), pages 271-283, December.
    6. Luis R. Murillo‐Zamorano, 2004. "Economic Efficiency and Frontier Techniques," Journal of Economic Surveys, Wiley Blackwell, vol. 18(1), pages 33-77, February.
    7. Salvatore Greco & Alessio Ishizaka & Menelaos Tasiou & Gianpiero Torrisi, 2019. "On the Methodological Framework of Composite Indices: A Review of the Issues of Weighting, Aggregation, and Robustness," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 141(1), pages 61-94, January.
    8. Aldanondo-Ochoa, Ana M. & Casasnovas-Oliva, Valero L. & Almansa-Sáez, M. Carmen, 2017. "Cross-constrained Measuring the Cost-environment Efficiency in Material Balance Based Frontier Models," Ecological Economics, Elsevier, vol. 142(C), pages 46-55.
    9. Zuoren Sun & Rundong Luo & Dequn Zhou, 2015. "Optimal Path for Controlling Sectoral CO 2 Emissions Among China’s Regions: A Centralized DEA Approach," Sustainability, MDPI, vol. 8(1), pages 1-20, December.
    10. Kohl, Sebastian & Brunner, Jens O., 2020. "Benchmarking the benchmarks – Comparing the accuracy of Data Envelopment Analysis models in constant returns to scale settings," European Journal of Operational Research, Elsevier, vol. 285(3), pages 1042-1057.
    11. Peyrache, Antonio & Rose, Christiern & Sicilia, Gabriela, 2020. "Variable selection in Data Envelopment Analysis," European Journal of Operational Research, Elsevier, vol. 282(2), pages 644-659.
    12. Cherchye, Laurens & Rock, Bram De & Saelens, Dieter & Verschelde, Marijn & Roets, Bart, 2024. "Productive efficiency analysis with unobserved inputs: An application to endogenous automation in railway traffic management," European Journal of Operational Research, Elsevier, vol. 313(2), pages 678-690.
    13. Ramón, Nuria & Ruiz, José L. & Sirvent, Inmaculada, 2010. "A multiplier bound approach to assess relative efficiency in DEA without slacks," European Journal of Operational Research, Elsevier, vol. 203(1), pages 261-269, May.
    14. Kuosmanen, Timo & Post, Thierry, 2001. "Measuring economic efficiency with incomplete price information: With an application to European commercial banks," European Journal of Operational Research, Elsevier, vol. 134(1), pages 43-58, October.
    15. Walter Briec & Hervé Leleu, 2003. "Dual Representations of Non-Parametric Technologies and Measurement of Technical Efficiency," Journal of Productivity Analysis, Springer, vol. 20(1), pages 71-96, July.
    16. Eskelinen, Juha, 2017. "Comparison of variable selection techniques for data envelopment analysis in a retail bank," European Journal of Operational Research, Elsevier, vol. 259(2), pages 778-788.
    17. Olesen, O. B., 1995. "Some unsolved problems in data envelopment analysis: A survey," International Journal of Production Economics, Elsevier, vol. 39(1-2), pages 5-36, April.
    18. Anna Łozowicka & Bartłomiej Lach, 2022. "CI-DEA: A Way to Improve the Discriminatory Power of DEA—Using the Example of the Efficiency Assessment of the Digitalization in the Life of the Generation 50+," Sustainability, MDPI, vol. 14(6), pages 1-22, March.
    19. Maria Portela & Emmanuel Thanassoulis, 2006. "Zero weights and non-zero slacks: Different solutions to the same problem," Annals of Operations Research, Springer, vol. 145(1), pages 129-147, July.
    20. Cook, Wade D. & Seiford, Larry M., 2009. "Data envelopment analysis (DEA) - Thirty years on," European Journal of Operational Research, Elsevier, vol. 192(1), pages 1-17, January.

    More about this item

    Keywords

    Technical efficiency; Aggregation bias; Monte Carlo; DEA Estimator accuracy;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • D20 - Microeconomics - - Production and Organizations - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:64120. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.