IDEAS home Printed from https://ideas.repec.org/a/kap/hcarem/v26y2023i3d10.1007_s10729-023-09634-7.html
   My bibliography  Save this article

Performance analysis of English hospitals during the first and second waves of the coronavirus pandemic

Author

Listed:
  • Timo Kuosmanen

    (Department of Economics, Turku School of Economics, University of Turku)

  • Yong Tan

    (School of Management, University of Bradford)

  • Sheng Dai

    (Department of Economics, Turku School of Economics, University of Turku)

Abstract

The coronavirus infection COVID-19 killed millions of people around the world in 2019-2022. Hospitals were in the forefront in the battle against the pandemic. This paper proposes a novel approach to assess the effectiveness of hospitals in saving lives. We empirically estimate the production function of COVID-19 deaths among hospital inpatients, applying Heckman’s two-stage approach to correct for the bias caused by a large number of zero-valued observations. We subsequently assess performance of hospitals based on regression residuals, incorporating contextual variables to convex quantile regression. Data of 187 hospitals in England over a 35-week period from April to December 2020 is divided in two sub-periods to compare the structural differences between the first and second waves of the pandemic. The results indicate significant performance improvement during the first wave, however, learning by doing was offset by the new mutated virus straits during the second wave. While the elderly patients were at significantly higher risk during the first wave, their expected mortality rate did not significantly differ from that of the general population during the second wave. Our most important empirical finding concerns large and systematic performance differences between individual hospitals: larger units proved more effective in saving lives, and hospitals in London had a lower mortality rate than the national average.

Suggested Citation

  • Timo Kuosmanen & Yong Tan & Sheng Dai, 2023. "Performance analysis of English hospitals during the first and second waves of the coronavirus pandemic," Health Care Management Science, Springer, vol. 26(3), pages 447-460, September.
  • Handle: RePEc:kap:hcarem:v:26:y:2023:i:3:d:10.1007_s10729-023-09634-7
    DOI: 10.1007/s10729-023-09634-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10729-023-09634-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10729-023-09634-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cheng, Gang & Zervopoulos, Panagiotis D., 2014. "Estimating the technical efficiency of health care systems: A cross-country comparison using the directional distance function," European Journal of Operational Research, Elsevier, vol. 238(3), pages 899-910.
    2. Keshvari, Abolfazl & Kuosmanen, Timo, 2013. "Stochastic non-convex envelopment of data: Applying isotonic regression to frontier estimation," European Journal of Operational Research, Elsevier, vol. 231(2), pages 481-491.
    3. James J. Heckman, 1976. "The Common Structure of Statistical Models of Truncation, Sample Selection and Limited Dependent Variables and a Simple Estimator for Such Models," NBER Chapters, in: Annals of Economic and Social Measurement, Volume 5, number 4, pages 475-492, National Bureau of Economic Research, Inc.
    4. Seiford, Lawrence M. & Zhu, Joe, 2003. "Context-dependent data envelopment analysis--Measuring attractiveness and progress," Omega, Elsevier, vol. 31(5), pages 397-408, October.
    5. Timo Kuosmanen & Andrew Johnson & Antti Saastamoinen, 2015. "Stochastic Nonparametric Approach to Efficiency Analysis: A Unified Framework," International Series in Operations Research & Management Science, in: Joe Zhu (ed.), Data Envelopment Analysis, edition 127, chapter 7, pages 191-244, Springer.
    6. Soroush Saghafian & Wallace J. Hopp, 2020. "Can Public Reporting Cure Healthcare? The Role of Quality Transparency in Improving Patient–Provider Alignment," Operations Research, INFORMS, vol. 68(1), pages 71-92, January.
    7. Nicholas Bloom & Carol Propper & Stephan Seiler & John Van Reenen, 2015. "The Impact of Competition on Management Quality: Evidence from Public Hospitals," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 82(2), pages 457-489.
    8. Whitney K. Newey, 2009. "Two-step series estimation of sample selection models," Econometrics Journal, Royal Economic Society, vol. 12(s1), pages 217-229, January.
    9. Andrew Johnson & Timo Kuosmanen, 2011. "One-stage estimation of the effects of operational conditions and practices on productive performance: asymptotically normal and efficient, root-n consistent StoNEZD method," Journal of Productivity Analysis, Springer, vol. 36(2), pages 219-230, October.
    10. Timo Kuosmanen, 2008. "Representation theorem for convex nonparametric least squares," Econometrics Journal, Royal Economic Society, vol. 11(2), pages 308-325, July.
    11. K. J. Arrow, 1971. "The Economic Implications of Learning by Doing," Palgrave Macmillan Books, in: F. H. Hahn (ed.), Readings in the Theory of Growth, chapter 11, pages 131-149, Palgrave Macmillan.
    12. Martin Gaynor & Rodrigo Moreno-Serra & Carol Propper, 2013. "Death by Market Power: Reform, Competition, and Patient Outcomes in the National Health Service," American Economic Journal: Economic Policy, American Economic Association, vol. 5(4), pages 134-166, November.
    13. Nikolopoulos, Konstantinos & Punia, Sushil & Schäfers, Andreas & Tsinopoulos, Christos & Vasilakis, Chrysovalantis, 2021. "Forecasting and planning during a pandemic: COVID-19 growth rates, supply chain disruptions, and governmental decisions," European Journal of Operational Research, Elsevier, vol. 290(1), pages 99-115.
    14. Michael Freeman & Nicos Savva & Stefan Scholtes, 2021. "Economies of Scale and Scope in Hospitals: An Empirical Study of Volume Spillovers," Management Science, INFORMS, vol. 67(2), pages 673-697, February.
    15. Johnson, Andrew L. & Kuosmanen, Timo, 2012. "One-stage and two-stage DEA estimation of the effects of contextual variables," European Journal of Operational Research, Elsevier, vol. 220(2), pages 559-570.
    16. Heckman, James, 2013. "Sample selection bias as a specification error," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 31(3), pages 129-137.
    17. Tsai, P. F. & Mar Molinero, C., 2002. "A variable returns to scale data envelopment analysis model for the joint determination of efficiencies with an example of the UK health service," European Journal of Operational Research, Elsevier, vol. 141(1), pages 21-38, August.
    18. Wang, Yongqiao & Wang, Shouyang & Dang, Chuangyin & Ge, Wenxiu, 2014. "Nonparametric quantile frontier estimation under shape restriction," European Journal of Operational Research, Elsevier, vol. 232(3), pages 671-678.
    19. Martin Gaynor & Harald Seider & William B. Vogt, 2005. "The Volume–Outcome Effect, Scale Economies, and Learning-by-Doing," American Economic Review, American Economic Association, vol. 95(2), pages 243-247, May.
    20. Silal, Sheetal Prakash, 2021. "Operational research: A multidisciplinary approach for the management of infectious disease in a global context," European Journal of Operational Research, Elsevier, vol. 291(3), pages 929-934.
    21. Kuosmanen, Timo & Zhou, Xun, 2021. "Shadow prices and marginal abatement costs: Convex quantile regression approach," European Journal of Operational Research, Elsevier, vol. 289(2), pages 666-675.
    22. Timo Kuosmanen & Mika Kortelainen, 2012. "Stochastic non-smooth envelopment of data: semi-parametric frontier estimation subject to shape constraints," Journal of Productivity Analysis, Springer, vol. 38(1), pages 11-28, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kuosmanen, Natalia & Kuosmanen, Timo & Maczulskij, Terhi & Zhou, Xun, 2024. "Least-cost Decarbonization Pathways for Electricity Generation in Finland: A Convex Quantile Regression Approach," ETLA Working Papers 114, The Research Institute of the Finnish Economy.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wen, Xiaojie & Yao, Shunbo & Sauer, Johannes, 2022. "Shadow prices and abatement cost of soil erosion in Shaanxi Province, China: Convex expectile regression approach," Ecological Economics, Elsevier, vol. 201(C).
    2. Dai, Sheng & Kuosmanen, Timo & Zhou, Xun, 2023. "Generalized quantile and expectile properties for shape constrained nonparametric estimation," European Journal of Operational Research, Elsevier, vol. 310(2), pages 914-927.
    3. Rødseth, Kenneth Løvold, 2023. "Shadow pricing of electricity generation using stochastic and deterministic materials balance models," Applied Energy, Elsevier, vol. 341(C).
    4. Shirong Zhao & Guangshun Qiao, 2022. "The shadow prices of CO2, SO2 and NOx for U.S. coal power industry 2010–2017: a convex quantile regression method," Journal of Productivity Analysis, Springer, vol. 57(3), pages 243-253, June.
    5. Kuosmanen, Timo, 2012. "Stochastic semi-nonparametric frontier estimation of electricity distribution networks: Application of the StoNED method in the Finnish regulatory model," Energy Economics, Elsevier, vol. 34(6), pages 2189-2199.
    6. Kuosmanen, Natalia & Kuosmanen, Timo & Maczulskij, Terhi & Zhou, Xun, 2024. "Least-cost Decarbonization Pathways for Electricity Generation in Finland: A Convex Quantile Regression Approach," ETLA Working Papers 114, The Research Institute of the Finnish Economy.
    7. Kuosmanen, Timo & Zhou, Xun, 2021. "Shadow prices and marginal abatement costs: Convex quantile regression approach," European Journal of Operational Research, Elsevier, vol. 289(2), pages 666-675.
    8. Tsionas, Mike G., 2022. "Convex non-parametric least squares, causal structures and productivity," European Journal of Operational Research, Elsevier, vol. 303(1), pages 370-387.
    9. Molinos-Senante, Maria & Maziotis, Alexandros, 2022. "Evaluation of energy efficiency of wastewater treatment plants: The influence of the technology and aging factors," Applied Energy, Elsevier, vol. 310(C).
    10. Keshvari, Abolfazl, 2017. "A penalized method for multivariate concave least squares with application to productivity analysis," European Journal of Operational Research, Elsevier, vol. 257(3), pages 1016-1029.
    11. Irene Wei Kiong Ting & Imen Tebourbi & Wen-Min Lu & Qian Long Kweh, 2021. "The effects of managerial ability on firm performance and the mediating role of capital structure: evidence from Taiwan," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-23, December.
    12. Olesen, Ole B. & Petersen, Niels Christian, 2016. "Stochastic Data Envelopment Analysis—A review," European Journal of Operational Research, Elsevier, vol. 251(1), pages 2-21.
    13. Preciado Arreola, José Luis & Johnson, Andrew L. & Chen, Xun C. & Morita, Hiroshi, 2020. "Estimating stochastic production frontiers: A one-stage multivariate semiparametric Bayesian concave regression method," European Journal of Operational Research, Elsevier, vol. 287(2), pages 699-711.
    14. Lee, Chia-Yen & Johnson, Andrew L. & Moreno-Centeno, Erick & Kuosmanen, Timo, 2013. "A more efficient algorithm for Convex Nonparametric Least Squares," European Journal of Operational Research, Elsevier, vol. 227(2), pages 391-400.
    15. Zhou, Xun & Kuosmanen, Timo, 2020. "What drives decarbonization of new passenger cars?," European Journal of Operational Research, Elsevier, vol. 284(3), pages 1043-1057.
    16. Dai, Sheng, 2023. "Variable selection in convex quantile regression: L1-norm or L0-norm regularization?," European Journal of Operational Research, Elsevier, vol. 305(1), pages 338-355.
    17. Eskelinen, Juha & Kuosmanen, Timo, 2013. "Intertemporal efficiency analysis of sales teams of a bank: Stochastic semi-nonparametric approach," Journal of Banking & Finance, Elsevier, vol. 37(12), pages 5163-5175.
    18. Mekaroonreung, Maethee & Johnson, Andrew L., 2014. "A nonparametric method to estimate a technical change effect on marginal abatement costs of U.S. coal power plants," Energy Economics, Elsevier, vol. 46(C), pages 45-55.
    19. Kuosmanen, Timo & Zhou, Xun & Dai, Sheng, 2020. "How much climate policy has cost for OECD countries?," World Development, Elsevier, vol. 125(C).
    20. Liu, Fangmei & Li, Li & Ye, Bin & Qin, Quande, 2023. "A novel stochastic semi-parametric frontier-based three-stage DEA window model to evaluate China's industrial green economic efficiency," Energy Economics, Elsevier, vol. 119(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:hcarem:v:26:y:2023:i:3:d:10.1007_s10729-023-09634-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.