IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v284y2020i3p1043-1057.html
   My bibliography  Save this article

What drives decarbonization of new passenger cars?

Author

Listed:
  • Zhou, Xun
  • Kuosmanen, Timo

Abstract

Transition towards a low-carbon transport sector fundamentally depends on decarbonization of the passenger car fleet. Therefore, it is critically important to understand the driving factors behind decreasing CO2 emissions of new passenger cars. This paper develops a new decomposition method to break down the change in the average CO2 emissions of new passenger cars into components representing changes in available technology, carbon efficiency of consumer choices, vehicle attributes, fuel mix, and the gap between type-approval and on-road CO2 emissions of passenger cars. Our decomposition draws insights from the traditional index decomposition analysis and frontier-based decomposition of productivity growth. It satisfies such desirable properties as factor reversal, time reversal, and zero-value robustness. An empirical application to a unique data set that covers all registered passenger cars in Finland sheds light on why and how the CO2 emissions of new cars decreased from year 2002 to year 2014.

Suggested Citation

  • Zhou, Xun & Kuosmanen, Timo, 2020. "What drives decarbonization of new passenger cars?," European Journal of Operational Research, Elsevier, vol. 284(3), pages 1043-1057.
  • Handle: RePEc:eee:ejores:v:284:y:2020:i:3:p:1043-1057
    DOI: 10.1016/j.ejor.2020.01.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221720300394
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2020.01.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ang, B. W., 2004. "Decomposition analysis for policymaking in energy:: which is the preferred method?," Energy Policy, Elsevier, vol. 32(9), pages 1131-1139, June.
    2. Xavier D'Haultfœuille & Pauline Givord & Xavier Boutin, 2014. "The Environmental Effect of Green Taxation: The Case of the French Bonus/Malus," Economic Journal, Royal Economic Society, vol. 124(578), pages 444-480, August.
    3. Timo Kuosmanen & Andrew Johnson & Antti Saastamoinen, 2015. "Stochastic Nonparametric Approach to Efficiency Analysis: A Unified Framework," International Series in Operations Research & Management Science, in: Joe Zhu (ed.), Data Envelopment Analysis, edition 127, chapter 7, pages 191-244, Springer.
    4. Du, Kerui & Lin, Boqiang, 2015. "Understanding the rapid growth of China's energy consumption: A comprehensive decomposition framework," Energy, Elsevier, vol. 90(P1), pages 570-577.
    5. Ray, Subhash C & Desli, Evangelia, 1997. "Productivity Growth, Technical Progress, and Efficiency Change in Industrialized Countries: Comment," American Economic Review, American Economic Association, vol. 87(5), pages 1033-1039, December.
    6. Du, Juan & Chen, Yao & Huang, Ying, 2018. "A Modified Malmquist-Luenberger Productivity Index: Assessing Environmental Productivity Performance in China," European Journal of Operational Research, Elsevier, vol. 269(1), pages 171-187.
    7. Papagiannaki, Katerina & Diakoulaki, Danae, 2009. "Decomposition analysis of CO2 emissions from passenger cars: The cases of Greece and Denmark," Energy Policy, Elsevier, vol. 37(8), pages 3259-3267, August.
    8. C. Lovell, 2003. "The Decomposition of Malmquist Productivity Indexes," Journal of Productivity Analysis, Springer, vol. 20(3), pages 437-458, November.
    9. Meyer, I. & Wessely, S., 2009. "Fuel efficiency of the Austrian passenger vehicle fleet--Analysis of trends in the technological profile and related impacts on CO2 emissions," Energy Policy, Elsevier, vol. 37(10), pages 3779-3789, October.
    10. B. W. Ang & Ki-Hong Choi, 1997. "Decomposition of Aggregate Energy and Gas Emission Intensities for Industry: A Refined Divisia Index Method," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 59-73.
    11. Zhou, P. & Ang, B.W., 2008. "Decomposition of aggregate CO2 emissions: A production-theoretical approach," Energy Economics, Elsevier, vol. 30(3), pages 1054-1067, May.
    12. Choi, Ki-Hong & Ang, B.W., 2012. "Attribution of changes in Divisia real energy intensity index — An extension to index decomposition analysis," Energy Economics, Elsevier, vol. 34(1), pages 171-176.
    13. Arabi, Behrouz & Munisamy, Susila & Emrouznejad, Ali & Shadman, Foroogh, 2014. "Power industry restructuring and eco-efficiency changes: A new slacks-based model in Malmquist–Luenberger Index measurement," Energy Policy, Elsevier, vol. 68(C), pages 132-145.
    14. Timo Kuosmanen, 2008. "Representation theorem for convex nonparametric least squares," Econometrics Journal, Royal Economic Society, vol. 11(2), pages 308-325, July.
    15. Lin, Boqiang & Du, Kerui, 2014. "Decomposing energy intensity change: A combination of index decomposition analysis and production-theoretical decomposition analysis," Applied Energy, Elsevier, vol. 129(C), pages 158-165.
    16. A. Camanho & R. Dyson, 2006. "Data envelopment analysis and Malmquist indices for measuring group performance," Journal of Productivity Analysis, Springer, vol. 26(1), pages 35-49, August.
    17. Aparicio, Juan & Crespo-Cebada, Eva & Pedraja-Chaparro, Francisco & Santín, Daniel, 2017. "Comparing school ownership performance using a pseudo-panel database: A Malmquist-type index approach," European Journal of Operational Research, Elsevier, vol. 256(2), pages 533-542.
    18. Olley, G Steven & Pakes, Ariel, 1996. "The Dynamics of Productivity in the Telecommunications Equipment Industry," Econometrica, Econometric Society, vol. 64(6), pages 1263-1297, November.
    19. Åsa Löfgren & Adrian Muller, 2010. "Swedish CO 2 Emissions 1993–2006: An Application of Decomposition Analysis and Some Methodological Insights," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 47(2), pages 221-239, October.
    20. Keshvari, Abolfazl, 2017. "A penalized method for multivariate concave least squares with application to productivity analysis," European Journal of Operational Research, Elsevier, vol. 257(3), pages 1016-1029.
    21. Chambers, Robert G. & Fare, Rolf & Grosskopf, Shawna, 1996. "Productivity Growth in APEC Countries," Working Papers 197843, University of Maryland, Department of Agricultural and Resource Economics.
    22. Rolf Färe & Xinju He & Sungko Li & Valentin Zelenyuk, 2019. "A Unifying Framework for Farrell Profit Efficiency Measurement," Operations Research, INFORMS, vol. 67(1), pages 183-197, January.
    23. Emrouznejad, Ali & Yang, Guo-liang, 2016. "CO2 emissions reduction of Chinese light manufacturing industries: A novel RAM-based global Malmquist–Luenberger productivity index," Energy Policy, Elsevier, vol. 96(C), pages 397-410.
    24. H. Wang & B.W. Ang & P. Zhou, 2018. "Decomposing aggregate CO2 emission changes with heterogeneity: An extended production-theoretical approach," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    25. Aparicio, Juan & Santin, Daniel, 2018. "A note on measuring group performance over time with pseudo-panels," European Journal of Operational Research, Elsevier, vol. 267(1), pages 227-235.
    26. Boussemart, Jean-Philippe & Leleu, Hervé & Shen, Zhiyang & Vardanyan, Michael & Zhu, Ning, 2019. "Decomposing banking performance into economic and credit risk efficiencies," European Journal of Operational Research, Elsevier, vol. 277(2), pages 719-726.
    27. Timo Kuosmanen & Andrew L. Johnson, 2010. "Data Envelopment Analysis as Nonparametric Least-Squares Regression," Operations Research, INFORMS, vol. 58(1), pages 149-160, February.
    28. Wang, Yongqiao & Wang, Shouyang & Dang, Chuangyin & Ge, Wenxiu, 2014. "Nonparametric quantile frontier estimation under shape restriction," European Journal of Operational Research, Elsevier, vol. 232(3), pages 671-678.
    29. Ang, B.W. & Liu, F.L., 2001. "A new energy decomposition method: perfect in decomposition and consistent in aggregation," Energy, Elsevier, vol. 26(6), pages 537-548.
    30. Wang, Qunwei & Hang, Ye & Su, Bin & Zhou, Peng, 2018. "Contributions to sector-level carbon intensity change: An integrated decomposition analysis," Energy Economics, Elsevier, vol. 70(C), pages 12-25.
    31. Ang, B.W. & Zhang, F.Q., 2000. "A survey of index decomposition analysis in energy and environmental studies," Energy, Elsevier, vol. 25(12), pages 1149-1176.
    32. MacKenzie, Don & Heywood, John B., 2015. "Quantifying efficiency technology improvements in U.S. cars from 1975–2009," Applied Energy, Elsevier, vol. 157(C), pages 918-928.
    33. He, Feng & Zhang, Qingzhi & Lei, Jiasu & Fu, Weihui & Xu, Xiaoning, 2013. "Energy efficiency and productivity change of China’s iron and steel industry: Accounting for undesirable outputs," Energy Policy, Elsevier, vol. 54(C), pages 204-213.
    34. Wang, H. & Ang, B.W. & Su, Bin, 2017. "Assessing drivers of economy-wide energy use and emissions: IDA versus SDA," Energy Policy, Elsevier, vol. 107(C), pages 585-599.
    35. Kwon, Tae-Hyeong, 2005. "Decomposition of factors determining the trend of CO2 emissions from car travel in Great Britain (1970-2000)," Ecological Economics, Elsevier, vol. 53(2), pages 261-275, April.
    36. Liu, Nan & Ma, Zujun & Kang, Jidong, 2017. "A regional analysis of carbon intensities of electricity generation in China," Energy Economics, Elsevier, vol. 67(C), pages 268-277.
    37. Wang, H. & Zhou, P. & Xie, Bai-Chen & Zhang, N., 2019. "Assessing drivers of CO2 emissions in China's electricity sector: A metafrontier production-theoretical decomposition analysis," European Journal of Operational Research, Elsevier, vol. 275(3), pages 1096-1107.
    38. Ruizhi Pang & Xuejie Bai & Knox Lovell (ed.), 2018. "Energy, Environment and Transitional Green Growth in China," Springer Books, Springer, number 978-981-10-7919-1, June.
    39. Rikard Althin, 2001. "Measurement of Productivity Changes: Two Malmquist Index Approaches," Journal of Productivity Analysis, Springer, vol. 16(2), pages 107-128, September.
    40. Fare, Rolf & Grosskopf, Shawna & Norris, Mary, 1997. "Productivity Growth, Technical Progress, and Efficiency Change in Industrialized Countries: Reply," American Economic Review, American Economic Association, vol. 87(5), pages 1040-1043, December.
    41. Timo Kuosmanen & Mika Kortelainen, 2012. "Stochastic non-smooth envelopment of data: semi-parametric frontier estimation subject to shape constraints," Journal of Productivity Analysis, Springer, vol. 38(1), pages 11-28, August.
    42. Sueyoshi, Toshiyuki & Li, Aijun & Liu, Xiaohong, 2019. "Exploring sources of China's CO2 emission: Decomposition analysis under different technology changes," European Journal of Operational Research, Elsevier, vol. 279(3), pages 984-995.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuan, Qianqian & Baležentis, Tomas & Shen, Zhiyang & Streimikiene, Dalia, 2021. "Economic and environmental performance of the belt and road countries under convex and nonconvex production technologies," Journal of Asian Economics, Elsevier, vol. 75(C).
    2. Mónica Meireles & Margarita Robaina & Daniel Magueta, 2021. "The Effectiveness of Environmental Taxes in Reducing CO 2 Emissions in Passenger Vehicles: The Case of Mediterranean Countries," IJERPH, MDPI, vol. 18(10), pages 1-13, May.
    3. Wang, Hui & Li, Rupeng & Zhang, Ning & Zhou, Peng & Wang, Qiang, 2020. "Assessing the role of technology in global manufacturing energy intensity change: A production-theoretical decomposition analysis," Technological Forecasting and Social Change, Elsevier, vol. 160(C).
    4. Wolff, Michael & Becker, Tristan & Walther, Grit, 2023. "Long-term design and analysis of renewable fuel supply chains – An integrated approach considering seasonal resource availability," European Journal of Operational Research, Elsevier, vol. 304(2), pages 745-762.
    5. Xu, Jin-Hua & Guo, Jian-Feng & Peng, Binbin & Nie, Hongguang & Kemp, Rene, 2020. "Energy growth sources and future energy-saving potentials in passenger transportation sector in China," Energy, Elsevier, vol. 206(C).
    6. Wu, F. & Zhou, P. & Zhou, D.Q., 2020. "Modeling carbon emission performance under a new joint production technology with energy input," Energy Economics, Elsevier, vol. 92(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Qunwei & Hang, Ye & Su, Bin & Zhou, Peng, 2018. "Contributions to sector-level carbon intensity change: An integrated decomposition analysis," Energy Economics, Elsevier, vol. 70(C), pages 12-25.
    2. Lizhan Cao & Hui Wang, 2022. "The Slowdown in China’s Energy Consumption Growth in the “New Normal” Stage: From Both National and Regional Perspectives," Sustainability, MDPI, vol. 14(7), pages 1-21, April.
    3. Huang, Fei & Zhou, Dequn & Wang, Qunwei & Hang, Ye, 2019. "Decomposition and attribution analysis of the transport sector’s carbon dioxide intensity change in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 119(C), pages 343-358.
    4. Zha, Donglan & Yang, Guanglei & Wang, Qunwei, 2019. "Investigating the driving factors of regional CO2 emissions in China using the IDA-PDA-MMI method," Energy Economics, Elsevier, vol. 84(C).
    5. Wang, Miao & Feng, Chao, 2018. "Decomposing the change in energy consumption in China's nonferrous metal industry: An empirical analysis based on the LMDI method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2652-2663.
    6. Aparicio, Juan & Ortiz, Lidia & Santín, Daniel, 2021. "Comparing group performance over time through the Luenberger productivity indicator: An application to school ownership in European countries," European Journal of Operational Research, Elsevier, vol. 294(2), pages 651-672.
    7. Wang, Qunwei & Chiu, Yung-Ho & Chiu, Ching-Ren, 2015. "Driving factors behind carbon dioxide emissions in China: A modified production-theoretical decomposition analysis," Energy Economics, Elsevier, vol. 51(C), pages 252-260.
    8. Wang, Miao & Feng, Chao, 2018. "Using an extended logarithmic mean Divisia index approach to assess the roles of economic factors on industrial CO2 emissions of China," Energy Economics, Elsevier, vol. 76(C), pages 101-114.
    9. Du, Kerui & Xie, Chunping & Ouyang, Xiaoling, 2017. "A comparison of carbon dioxide (CO2) emission trends among provinces in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 19-25.
    10. van Megen, Bram & Bürer, Meinrad & Patel, Martin K., 2019. "Comparing electricity consumption trends: A multilevel index decomposition analysis of the Genevan and Swiss economy," Energy Economics, Elsevier, vol. 83(C), pages 1-25.
    11. Wang, Juan & Hu, Mingming & Rodrigues, João F.D., 2018. "The evolution and driving forces of industrial aggregate energy intensity in China: An extended decomposition analysis," Applied Energy, Elsevier, vol. 228(C), pages 2195-2206.
    12. Fernández González, P. & Presno, M.J. & Landajo, M., 2015. "Regional and sectoral attribution to percentage changes in the European Divisia carbonization index," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1437-1452.
    13. Zhao, Zhibo & Shi, Xunpeng & Zhao, Lingdi & Zhang, Jinggu, 2020. "Extending production-theoretical decomposition analysis to environmentally sensitive growth: Case study of Belt and Road Initiative countries," Technological Forecasting and Social Change, Elsevier, vol. 161(C).
    14. Wang, Hui & Li, Rupeng & Zhang, Ning & Zhou, Peng & Wang, Qiang, 2020. "Assessing the role of technology in global manufacturing energy intensity change: A production-theoretical decomposition analysis," Technological Forecasting and Social Change, Elsevier, vol. 160(C).
    15. Aparicio, Juan & Santín, Daniel, 2024. "Global and local technical changes: A new decomposition of the Malmquist productivity index using virtual units," Economic Modelling, Elsevier, vol. 134(C).
    16. Liu, Nan & Ma, Zujun & Kang, Jidong & Su, Bin, 2019. "A multi-region multi-sector decomposition and attribution analysis of aggregate carbon intensity in China from 2000 to 2015," Energy Policy, Elsevier, vol. 129(C), pages 410-421.
    17. Sobrino, Natalia & Monzon, Andres, 2014. "The impact of the economic crisis and policy actions on GHG emissions from road transport in Spain," Energy Policy, Elsevier, vol. 74(C), pages 486-498.
    18. Béchir Ben Lahouel & Younes Ben Zaied & Guo-liang Yang & Maria-Giuseppina Bruna & Yaoyao Song, 2022. "A non-parametric decomposition of the environmental performance-income relationship: evidence from a non-linear model," Annals of Operations Research, Springer, vol. 313(1), pages 525-558, June.
    19. Chen, Jiandong & Xu, Chong & Cui, Lianbiao & Huang, Shuo & Song, Malin, 2019. "Driving factors of CO2 emissions and inequality characteristics in China: A combined decomposition approach," Energy Economics, Elsevier, vol. 78(C), pages 589-597.
    20. Wang, Miao & Feng, Chao, 2017. "Decomposition of energy-related CO2 emissions in China: An empirical analysis based on provincial panel data of three sectors," Applied Energy, Elsevier, vol. 190(C), pages 772-787.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:284:y:2020:i:3:p:1043-1057. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.