IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v37y2009i10p3779-3789.html
   My bibliography  Save this article

Fuel efficiency of the Austrian passenger vehicle fleet--Analysis of trends in the technological profile and related impacts on CO2 emissions

Author

Listed:
  • Meyer, I.
  • Wessely, S.

Abstract

This paper analyzes trends in the technological profile of the Austrian personnel vehicle fleet from 1990 to 2007. This includes the parameters of power, engine size and weight, which beyond the technological efficiency of the motor engine itself, are considered to be the main determinants of the fuel efficiency of the average car stock. Investigating the drivers of ever rising transport related greenhouse gas emissions is crucial in order to derive policies that strive towards more energy-efficient on-road passenger mobility. We focus on the efficacy of technological efficiency improvements in mitigating climate-relevant emissions from car use in light of shifting demand patterns towards bigger, heavier and more powerful cars. The analysis is descriptive in nature and based on a bottom-up database that was originally collated for the purpose of the present study. Technological data on car models, which includes tested fuel consumption, engine size, power and weight, is related to registered car stock and, in parts, to newly registered cars. From this, we obtain an original database of the Austrian passenger car fleet, i.e. information on consumer choice of specific car models, segregated by gasoline and diesel fuelled engines. Conclusions are derived for policies aimed at reducing the fossil fuel consumption of the moving vehicle fleet in order to contribute to a low carbon society.

Suggested Citation

  • Meyer, I. & Wessely, S., 2009. "Fuel efficiency of the Austrian passenger vehicle fleet--Analysis of trends in the technological profile and related impacts on CO2 emissions," Energy Policy, Elsevier, vol. 37(10), pages 3779-3789, October.
  • Handle: RePEc:eee:enepol:v:37:y:2009:i:10:p:3779-3789
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(09)00524-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Schipper, Lee & Figueroa, Maria Josefina & Price, Lynn & Espey, Molly, 1993. "Mind the gap The vicious circle of measuring automobile fuel use," Energy Policy, Elsevier, vol. 21(12), pages 1173-1190, December.
    2. Meyer, I. & Leimbach, M. & Jaeger, C.C., 2007. "International passenger transport and climate change: A sector analysis in car demand and associated CO2 emissions from 2000 to 2050," Energy Policy, Elsevier, vol. 35(12), pages 6332-6345, December.
    3. Kenneth A. Small & Kurt Van Dender, 2007. "Fuel Efficiency and Motor Vehicle Travel: The Declining Rebound Effect," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 25-52.
    4. Schipper, Lee & Tax, Wienke, 1994. "New car test and actual fuel economy: yet another gap?," Transport Policy, Elsevier, vol. 1(4), pages 257-265, October.
    5. A. Greening, Lorna & Greene, David L. & Difiglio, Carmen, 2000. "Energy efficiency and consumption -- the rebound effect -- a survey," Energy Policy, Elsevier, vol. 28(6-7), pages 389-401, June.
    6. Clifton T Jones, 1993. "Another Look at U.S. Passenger Vehicle Use and the 'Rebound' Effect from Improved Fuel Efficiency," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 99-110.
    7. David L. Greene, 1992. "Vehicle Use and Fuel Economy: How Big is the "Rebound" Effect?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 117-144.
    8. Lee Schipper & Céline Marie-Lilliu & Lew Fulton, 2002. "Diesels in Europe: Analysis of Characteristics, Usage Patterns, Energy Savings and CO 2 Emission Implications," Journal of Transport Economics and Policy, University of Bath, vol. 36(2), pages 305-340, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bruns, Stephan B. & Moneta, Alessio & Stern, David I., 2021. "Estimating the economy-wide rebound effect using empirically identified structural vector autoregressions," Energy Economics, Elsevier, vol. 97(C).
    2. Kurt Kratena & Ina Meyer, 2011. "Energy Scenarios 2030. A Basis for the Projection of Austrian Greenhouse Gas Emissions," WIFO Studies, WIFO, number 41909, April.
    3. Wu, Tian & Han, Xiao & Zheng, M. Mocarlo & Ou, Xunmin & Sun, Hongbo & Zhang, Xiong, 2020. "Impact factors of the real-world fuel consumption rate of light duty vehicles in China," Energy, Elsevier, vol. 190(C).
    4. Kurt Kratena & Ina Meyer & Mark Sommer, 2013. "Energy Scenarios 2030. Model Projections of Energy Demand as a Basis to Quantify Austria's Greenhouse Gas Emissions," WIFO Studies, WIFO, number 46702, April.
    5. Huo, Hong & Yao, Zhiliang & He, Kebin & Yu, Xin, 2011. "Fuel consumption rates of passenger cars in China: Labels versus real-world," Energy Policy, Elsevier, vol. 39(11), pages 7130-7135.
    6. Zhou, Xun & Kuosmanen, Timo, 2020. "What drives decarbonization of new passenger cars?," European Journal of Operational Research, Elsevier, vol. 284(3), pages 1043-1057.
    7. Kloess, Maximilian & Müller, Andreas, 2011. "Simulating the impact of policy, energy prices and technological progress on the passenger car fleet in Austria--A model based analysis 2010-2050," Energy Policy, Elsevier, vol. 39(9), pages 5045-5062, September.
    8. Angela Köppl & Claudia Kettner & Daniela Kletzan-Slamanig & Stefan Schleicher & Andrea Damm & Karl Steininger & Brigitte Wolkinger & Hans Schnitzer & Michaela Titz & Heidemarie Artner & Andreas Karne, 2014. "Energy Transition in Austria: Designing Mitigation Wedges," Energy & Environment, , vol. 25(2), pages 281-304, April.
    9. Weber, Sylvain, 2019. "Consumers' preferences on the Swiss car market: A revealed preference approach," Transport Policy, Elsevier, vol. 75(C), pages 109-118.
    10. Rebeca Fontanilla Andong & Edsel Sajor, 2017. "Urban sprawl, public transport, and increasing CO2 emissions: the case of Metro Manila, Philippines," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(1), pages 99-123, February.
    11. Eva Valeri & Amanda Stathopoulos & Edoardo Marcucci, 2012. "Energy Efficiency In The Transport Sector: Policy Evolution In Some European Countries," Working Papers 0312, CREI Università degli Studi Roma Tre, revised 2012.
    12. Claudiu URSU & Alina MOROSANU, 2013. "Statistical Evaluation Of Regional Differences Regarding Passenger Cars Fleet Concentration From Romania, In 2007-2012," Romanian Statistical Review, Romanian Statistical Review, vol. 61(10), pages 13-22, November.
    13. Sprei, Frances & Karlsson, Sten, 2013. "Energy efficiency versus gains in consumer amenities—An example from new cars sold in Sweden," Energy Policy, Elsevier, vol. 53(C), pages 490-499.
    14. Bishop, Justin D.K. & Martin, Niall P.D. & Boies, Adam M., 2014. "Cost-effectiveness of alternative powertrains for reduced energy use and CO2 emissions in passenger vehicles," Applied Energy, Elsevier, vol. 124(C), pages 44-61.
    15. Goerlich, Roland & Wirl, Franz, 2012. "Interdependencies between transport fuel demand, efficiency and quality: An application to Austria," Energy Policy, Elsevier, vol. 41(C), pages 47-58.
    16. Kurt Kratena & Ina Meyer & Michael Wüger, 2009. "Ökonomische, technologische und soziodemographische Einflussfaktoren der Energienachfrage," WIFO Monatsberichte (monthly reports), WIFO, vol. 82(7), pages 525-538, July.
    17. Bishop, Justin D.K. & Martin, Niall P.D. & Boies, Adam M., 2016. "Quantifying the role of vehicle size, powertrain technology, activity and consumer behaviour on new UK passenger vehicle fleet energy use and emissions under different policy objectives," Applied Energy, Elsevier, vol. 180(C), pages 196-212.
    18. Fontaras, Georgios & Dilara, Panagiota, 2012. "The evolution of European passenger car characteristics 2000–2010 and its effects on real-world CO2 emissions and CO2 reduction policy," Energy Policy, Elsevier, vol. 49(C), pages 719-730.
    19. Sheinbaum-Pardo, Claudia & Chávez-Baeza, Carlos, 2011. "Fuel economy of new passenger cars in Mexico: Trends from 1988 to 2008 and prospects," Energy Policy, Elsevier, vol. 39(12), pages 8153-8162.
    20. Liu, Feiqi & Zhao, Fuquan & Liu, Zongwei & Hao, Han, 2019. "Can autonomous vehicle reduce greenhouse gas emissions? A country-level evaluation," Energy Policy, Elsevier, vol. 132(C), pages 462-473.
    21. Fu, Miao & Andrew Kelly, J., 2012. "Carbon related taxation policies for road transport: Efficacy of ownership and usage taxes, and the role of public transport and motorist cost perception on policy outcomes," Transport Policy, Elsevier, vol. 22(C), pages 57-69.
    22. Luan Santos & Karl Steininger & Marcelle Candido Cordeiro & Johanna Vogel, 2022. "Current Status and Future Perspectives of Carbon Pricing Research in Austria," Sustainability, MDPI, vol. 14(15), pages 1-28, August.
    23. Kurt Kratena & Michael Wüger, 2010. "An Intertemporal Optimisation Model of Households in an E3-Model (Economy/Energy/Environment) Framework," WIFO Working Papers 382, WIFO.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shigemi Kagawa & Yuriko Goto & Sangwon Suh & Keisuke Nansai & Yuki Kudoh, 2012. "Accounting for Changes in Automobile Gasoline Consumption in Japan: 2000–2007," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 1(1), pages 1-27, December.
    2. Sorrell, Steve & Dimitropoulos, John & Sommerville, Matt, 2009. "Empirical estimates of the direct rebound effect: A review," Energy Policy, Elsevier, vol. 37(4), pages 1356-1371, April.
    3. Greene, David L., 2012. "Rebound 2007: Analysis of U.S. light-duty vehicle travel statistics," Energy Policy, Elsevier, vol. 41(C), pages 14-28.
    4. Hymel, Kent M. & Small, Kenneth A. & Dender, Kurt Van, 2010. "Induced demand and rebound effects in road transport," Transportation Research Part B: Methodological, Elsevier, vol. 44(10), pages 1220-1241, December.
    5. Zolnik, Edmund J., 2012. "Estimates of statewide and nationwide carbon dioxide emission reductions and their costs from Cash for Clunkers," Journal of Transport Geography, Elsevier, vol. 24(C), pages 271-281.
    6. Su, Qing, 2011. "Induced motor vehicle travel from improved fuel efficiency and road expansion," Energy Policy, Elsevier, vol. 39(11), pages 7257-7264.
    7. Lin, Boqiang & Chen, Yufang & Zhang, Guoliang, 2017. "Technological progress and rebound effect in China's nonferrous metals industry: An empirical study," Energy Policy, Elsevier, vol. 109(C), pages 520-529.
    8. Anas, Alex & Hiramatsu, Tomoru, 2012. "The effect of the price of gasoline on the urban economy: From route choice to general equilibrium," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(6), pages 855-873.
    9. Wang, Jiayu & Yu, Shuao & Liu, Tiansen, 2021. "A theoretical analysis of the direct rebound effect caused by energy efficiency improvement of private consumers," Economic Analysis and Policy, Elsevier, vol. 69(C), pages 171-181.
    10. Dimitropoulos, Alexandros & Oueslati, Walid & Sintek, Christina, 2018. "The rebound effect in road transport: A meta-analysis of empirical studies," Energy Economics, Elsevier, vol. 75(C), pages 163-179.
    11. Ghoddusi, Hamed & Roy, Mandira, 2017. "Supply elasticity matters for the rebound effect and its impact on policy comparisons," Energy Economics, Elsevier, vol. 67(C), pages 111-120.
    12. Kagawa, Shigemi & Nansai, Keisuke & Kudoh, Yuki, 2009. "Does product lifetime extension increase our income at the expense of energy consumption?," Energy Economics, Elsevier, vol. 31(2), pages 197-210.
    13. Moshiri, Saeed, 2020. "Consumer responses to gasoline price and non-price policies," Energy Policy, Elsevier, vol. 137(C).
    14. Su, Qing, 2012. "A quantile regression analysis of the rebound effect: Evidence from the 2009 National Household Transportation Survey in the United States," Energy Policy, Elsevier, vol. 45(C), pages 368-377.
    15. Schipper, Lee, 2011. "Automobile use, fuel economy and CO2 emissions in industrialized countries: Encouraging trends through 2008?," Transport Policy, Elsevier, vol. 18(2), pages 358-372, March.
    16. Lloro, Alicia & Brownstone, David, 2018. "Vehicle choice and utilization: Improving estimation with partially observed choices and hybrid pairs," Journal of choice modelling, Elsevier, vol. 28(C), pages 137-152.
    17. Wang, Zhaohua & Lu, Milin, 2014. "An empirical study of direct rebound effect for road freight transport in China," Applied Energy, Elsevier, vol. 133(C), pages 274-281.
    18. Galvin, Ray, 2016. "Rebound effects from speed and acceleration in electric and internal combustion engine cars: An empirical and conceptual investigation," Applied Energy, Elsevier, vol. 172(C), pages 207-216.
    19. González, Rosa Marina & Marrero, Gustavo A. & Rodríguez-López, Jesús & Marrero, Ángel S., 2019. "Analyzing CO2 emissions from passenger cars in Europe: A dynamic panel data approach," Energy Policy, Elsevier, vol. 129(C), pages 1271-1281.
    20. Moshiri, Saeed & Aliyev, Kamil, 2017. "Rebound effect of efficiency improvement in passenger cars on gasoline consumption in Canada," Ecological Economics, Elsevier, vol. 131(C), pages 330-341.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:37:y:2009:i:10:p:3779-3789. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.