IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v39y2011i11p7130-7135.html
   My bibliography  Save this article

Fuel consumption rates of passenger cars in China: Labels versus real-world

Author

Listed:
  • Huo, Hong
  • Yao, Zhiliang
  • He, Kebin
  • Yu, Xin

Abstract

Recently, China has implemented many policy measures to control the oil demand of on-road vehicles. In 2010, China started to report the fuel consumption rates of light-duty vehicles tested in laboratory and to require new vehicles to show the rates on window labels. In this study, we examined the differences between the test and real-world fuel consumption of Chinese passenger cars by using the data reported by real-world drivers on the internet voluntarily. The sales-weighted average fuel consumption of new cars in China in 2009 was 7.80L/100km in laboratory and 9.02L/100km in real-world, representing a difference of 15.5%. For the 153 individual car models examined, the real-world fuel consumption rates were −8 to 60% different from the test values. The simulation results of the International Vehicle Emission model show that the real-world driving cycles in 22 selected Chinese cities could result in −8 to 34% of changes in fuel consumption compared to the laboratory driving cycle. Further government effort on fuel consumption estimates adjustment, local driving cycle development, and real-world data accumulation through communication with the public is needed to improve the accuracy of the labeling policy.

Suggested Citation

  • Huo, Hong & Yao, Zhiliang & He, Kebin & Yu, Xin, 2011. "Fuel consumption rates of passenger cars in China: Labels versus real-world," Energy Policy, Elsevier, vol. 39(11), pages 7130-7135.
  • Handle: RePEc:eee:enepol:v:39:y:2011:i:11:p:7130-7135
    DOI: 10.1016/j.enpol.2011.08.031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421511006288
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2011.08.031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Meyer, I. & Wessely, S., 2009. "Fuel efficiency of the Austrian passenger vehicle fleet--Analysis of trends in the technological profile and related impacts on CO2 emissions," Energy Policy, Elsevier, vol. 37(10), pages 3779-3789, October.
    2. Schipper, Lee & Tax, Wienke, 1994. "New car test and actual fuel economy: yet another gap?," Transport Policy, Elsevier, vol. 1(4), pages 257-265, October.
    3. Wagner, David Vance & An, Feng & Wang, Cheng, 2009. "Structure and impacts of fuel economy standards for passenger cars in China," Energy Policy, Elsevier, vol. 37(10), pages 3803-3811, October.
    4. He, Kebin & Huo, Hong & Zhang, Qiang & He, Dongquan & An, Feng & Wang, Michael & Walsh, Michael P., 2005. "Oil consumption and CO2 emissions in China's road transport: current status, future trends, and policy implications," Energy Policy, Elsevier, vol. 33(12), pages 1499-1507, August.
    5. Zachariadis, Theodoros, 2006. "On the baseline evolution of automobile fuel economy in Europe," Energy Policy, Elsevier, vol. 34(14), pages 1773-1785, September.
    6. Wang, Zhao & Jin, Yuefu & Wang, Michael & Wei, Wu, 2010. "New fuel consumption standards for Chinese passenger vehicles and their effects on reductions of oil use and CO2 emissions of the Chinese passenger vehicle fleet," Energy Policy, Elsevier, vol. 38(9), pages 5242-5250, September.
    7. Oliver, Hongyan H. & Gallagher, Kelly Sims & Tian, Donglian & Zhang, Jinhua, 2009. "China's fuel economy standards for passenger vehicles: Rationale, policy process, and impacts," Energy Policy, Elsevier, vol. 37(11), pages 4720-4729, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huo, Hong & He, Kebin & Wang, Michael & Yao, Zhiliang, 2012. "Vehicle technologies, fuel-economy policies, and fuel-consumption rates of Chinese vehicles," Energy Policy, Elsevier, vol. 43(C), pages 30-36.
    2. Sheinbaum-Pardo, Claudia & Chávez-Baeza, Carlos, 2011. "Fuel economy of new passenger cars in Mexico: Trends from 1988 to 2008 and prospects," Energy Policy, Elsevier, vol. 39(12), pages 8153-8162.
    3. Ben Dror, Maya & Qin, Lanzhi & An, Feng, 2019. "The gap between certified and real-world passenger vehicle fuel consumption in China measured using a mobile phone application data," Energy Policy, Elsevier, vol. 128(C), pages 8-16.
    4. Wu, Tian & Han, Xiao & Zheng, M. Mocarlo & Ou, Xunmin & Sun, Hongbo & Zhang, Xiong, 2020. "Impact factors of the real-world fuel consumption rate of light duty vehicles in China," Energy, Elsevier, vol. 190(C).
    5. Li, Yi & Wang, Zhaohua & Wang, Ke & Zhang, Bin, 2021. "Fuel economy of Chinese light-duty car manufacturers: An efficiency analysis perspective," Energy, Elsevier, vol. 220(C).
    6. Mahlia, T.M.I. & Tohno, S. & Tezuka, T., 2012. "History and current status of the motor vehicle energy labeling and its implementation possibilities in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 1828-1844.
    7. Lo, Kevin, 2014. "A critical review of China's rapidly developing renewable energy and energy efficiency policies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 508-516.
    8. Wu, Ye & Yang, Zhengdong & Lin, Bohong & Liu, Huan & Wang, Renjie & Zhou, Boya & Hao, Jiming, 2012. "Energy consumption and CO2 emission impacts of vehicle electrification in three developed regions of China," Energy Policy, Elsevier, vol. 48(C), pages 537-550.
    9. Weber, Sylvain, 2019. "Consumers' preferences on the Swiss car market: A revealed preference approach," Transport Policy, Elsevier, vol. 75(C), pages 109-118.
    10. Atabani, A.E. & Badruddin, Irfan Anjum & Mekhilef, S. & Silitonga, A.S., 2011. "A review on global fuel economy standards, labels and technologies in the transportation sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4586-4610.
    11. Liu, Yang & Wang, Yu & Huo, Hong, 2013. "Temporal and spatial variations in on-road energy use and CO2 emissions in China, 1978–2008," Energy Policy, Elsevier, vol. 61(C), pages 544-550.
    12. Zhang, Shaojun & Wu, Ye & Liu, Huan & Huang, Ruikun & Un, Puikei & Zhou, Yu & Fu, Lixin & Hao, Jiming, 2014. "Real-world fuel consumption and CO2 (carbon dioxide) emissions by driving conditions for light-duty passenger vehicles in China," Energy, Elsevier, vol. 69(C), pages 247-257.
    13. Duc Luong, Nguyen, 2015. "A critical review on Energy Efficiency and Conservation policies and programs in Vietnam," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 623-634.
    14. Hao, Han & Liu, Zongwei & Zhao, Fuquan & Li, Weiqi & Hang, Wen, 2015. "Scenario analysis of energy consumption and greenhouse gas emissions from China's passenger vehicles," Energy, Elsevier, vol. 91(C), pages 151-159.
    15. Hao, Han & Wang, Hewu & Ouyang, Minggao, 2011. "Fuel conservation and GHG (Greenhouse gas) emissions mitigation scenarios for China’s passenger vehicle fleet," Energy, Elsevier, vol. 36(11), pages 6520-6528.
    16. Sprei, Frances & Karlsson, Sten, 2013. "Energy efficiency versus gains in consumer amenities—An example from new cars sold in Sweden," Energy Policy, Elsevier, vol. 53(C), pages 490-499.
    17. Huo, Hong & Wang, Michael & Zhang, Xiliang & He, Kebin & Gong, Huiming & Jiang, Kejun & Jin, Yuefu & Shi, Yaodong & Yu, Xin, 2012. "Projection of energy use and greenhouse gas emissions by motor vehicles in China: Policy options and impacts," Energy Policy, Elsevier, vol. 43(C), pages 37-48.
    18. Wang, Y.F. & Li, K.P. & Xu, X.M. & Zhang, Y.R., 2014. "Transport energy consumption and saving in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 641-655.
    19. Zhang, Chuanguo & Nian, Jiang, 2013. "Panel estimation for transport sector CO2 emissions and its affecting factors: A regional analysis in China," Energy Policy, Elsevier, vol. 63(C), pages 918-926.
    20. Schipper, Lee & Fulton, Lew, 2013. "Dazzled by diesel? The impact on carbon dioxide emissions of the shift to diesels in Europe through 2009," Energy Policy, Elsevier, vol. 54(C), pages 3-10.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:39:y:2011:i:11:p:7130-7135. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.