IDEAS home Printed from https://ideas.repec.org/a/eee/trapol/v18y2011i2p358-372.html
   My bibliography  Save this article

Automobile use, fuel economy and CO2 emissions in industrialized countries: Encouraging trends through 2008?

Author

Listed:
  • Schipper, Lee

Abstract

Car use and fuel economy are factors that determine oil demand and carbon dioxide (CO2) emissions. Recent data on automobile utilization and fuel economy reveal surprising trends that point to changes in oil demand and CO2 emissions. New vehicle and on-road fleet fuel economy have risen in Europe and Japan since the mid 1990s, and in the US since 2003. Combined with a plateau in per capita vehicle use in all countries analyzed, these trends indicate that per capita fuel use and resultant tail-pipe CO2 emissions have stagnated or even declined. Fuel economy technology, while important, is not the only factor that explains changes in tested and on-road fuel economy, vehicle efficiency and transport emissions across countries. Vehicle size and performance choices by car producers and buyers, and driving distances have also played significant roles in total fuel consumption, and explain most of the differences among countries. Technology applied to new vehicles managed to drive down the fuel use per unit of horsepower or weight by 50%, yet most of the potential fuel savings were negated by overall increased power and weight, particularly in the US. Similarly, the promise of savings from dieselization of the fleet has revealed itself as a minor element of the overall improvement in new vehicle or on-road fuel economy. And the fact that diesels are driven so much more than gasoline cars, a difference that has increased since 1990, argues that those savings are minimal. This latter point is a reminder that car use, not just efficiency or fuel choice, is an important determinant of total fuel use and CO2 emissions. We speculate that if the upward spiral of car weight and power slows or even reverses (as has been observed in Europe and Japan) and the now mandatory standards in many countries have the intended effect that fuel use will remain flat or only grow weakly for some time. If real fuel prices of 2008, which rivaled their peaks of the early 1980s, fell back somewhat but still remain well above their early 2000 values. If the prices remain high, this, combined with the strengthened fuel economy standards, may finally lead to new patterns of car ownership, use and fuel economy. However, if fuel prices continue their own stagnation or even decline after the peaks of 2008 and car use starts upward, fuel use will increase again, albeit more slowly.

Suggested Citation

  • Schipper, Lee, 2011. "Automobile use, fuel economy and CO2 emissions in industrialized countries: Encouraging trends through 2008?," Transport Policy, Elsevier, vol. 18(2), pages 358-372, March.
  • Handle: RePEc:eee:trapol:v:18:y:2011:i:2:p:358-372
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0967-070X(10)00135-6
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ó Gallachóir, Brian P. & Howley, Martin & Cunningham, Stephen & Bazilian, Morgan, 2009. "How private car purchasing trends offset efficiency gains and the successful energy policy response," Energy Policy, Elsevier, vol. 37(10), pages 3790-3802, October.
    2. Jonathan E. Hughes & Christopher R. Knittel & Daniel Sperling, 2008. "Evidence of a Shift in the Short-Run Price Elasticity of Gasoline Demand," The Energy Journal, International Association for Energy Economics, vol. 29(1), pages 113-134.
    3. Hymel, Kent M. & Small, Kenneth A. & Dender, Kurt Van, 2010. "Induced demand and rebound effects in road transport," Transportation Research Part B: Methodological, Elsevier, vol. 44(10), pages 1220-1241, December.
    4. Schipper, Lee & Figueroa, Maria Josefina & Price, Lynn & Espey, Molly, 1993. "Mind the gap The vicious circle of measuring automobile fuel use," Energy Policy, Elsevier, pages 1173-1190.
    5. Kamakaté, Fatumata & Schipper, Lee, 2009. "Trends in truck freight energy use and carbon emissions in selected OECD countries from 1973 to 2005," Energy Policy, Elsevier, vol. 37(10), pages 3743-3751, October.
    6. Kenneth A. Small & Kurt Van Dender, 2007. "Fuel Efficiency and Motor Vehicle Travel: The Declining Rebound Effect," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 25-52.
    7. Mayeres, Inge & Proost, Stef, 2001. "Should diesel cars in Europe be discouraged?," Regional Science and Urban Economics, Elsevier, vol. 31(4), pages 453-470, July.
    8. Fontaras, Georgios & Samaras, Zissis, 2010. "On the way to 130 g CO2/km--Estimating the future characteristics of the average European passenger car," Energy Policy, Elsevier, vol. 38(4), pages 1826-1833, April.
    9. Greene, David L, 1998. "Why CAFE worked," Energy Policy, Elsevier, vol. 26(8), pages 595-613, July.
    10. Schipper, Lee & Tax, Wienke, 1994. "New car test and actual fuel economy: yet another gap?," Transport Policy, Elsevier, vol. 1(4), pages 257-265, October.
    11. Zachariadis, Theodoros, 2006. "On the baseline evolution of automobile fuel economy in Europe," Energy Policy, Elsevier, vol. 34(14), pages 1773-1785, September.
    12. Ross Morrow, W. & Gallagher, Kelly Sims & Collantes, Gustavo & Lee, Henry, 2010. "Analysis of policies to reduce oil consumption and greenhouse-gas emissions from the US transportation sector," Energy Policy, Elsevier, vol. 38(3), pages 1305-1320, March.
    13. Zachariadis, Theodoros & Samaras, Zissis, 2001. "Validation of road transport statistics through energy efficiency calculations," Energy, Elsevier, vol. 26(5), pages 467-491.
    14. Ryan, Lisa & Ferreira, Susana & Convery, Frank, 2009. "The impact of fiscal and other measures on new passenger car sales and CO2 emissions intensity: Evidence from Europe," Energy Economics, Elsevier, vol. 31(3), pages 365-374, May.
    15. Lee Schipper & Céline Marie-Lilliu & Lew Fulton, 2002. "Diesels in Europe: Analysis of Characteristics, Usage Patterns, Energy Savings and CO 2 Emission Implications," Journal of Transport Economics and Policy, University of Bath, vol. 36(2), pages 305-340, May.
    16. Clerides, Sofronis & Zachariadis, Theodoros, 2008. "The effect of standards and fuel prices on automobile fuel economy: An international analysis," Energy Economics, Elsevier, vol. 30(5), pages 2657-2672, September.
    17. David L. Greene, 1990. "CAFE OR PRICE?: An Analysis of the Effects of Federal Fuel Economy Regulations and Gasoline Price on New Car MPG, 1978-89," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 37-58.
    18. Bonilla, David, 2009. "Fuel demand on UK roads and dieselisation of fuel economy," Energy Policy, Elsevier, vol. 37(10), pages 3769-3778, October.
    19. Joyce Dargay & Dermot Gately & Martin Sommer, 2007. "Vehicle Ownership and Income Growth, Worldwide: 1960-2030," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 143-170.
    20. Fontaras, Georgios & Samaras, Zissis, 2007. "A quantitative analysis of the European Automakers' voluntary commitment to reduce CO2 emissions from new passenger cars based on independent experimental data," Energy Policy, Elsevier, vol. 35(4), pages 2239-2248, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bénédicte Meurisse, 2015. "On the relevance of differentiated car purchase taxes in light of the rebound effect," EconomiX Working Papers 2015-24, University of Paris Nanterre, EconomiX.
    2. Schwanen, Tim & Banister, David & Anable, Jillian, 2011. "Scientific research about climate change mitigation in transport: A critical review," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(10), pages 993-1006.
    3. Galarraga, Ibon & Ramos, Ana & Lucas, Josu & Labandeira, Xavier, 2014. "The price of energy efficiency in the Spanish car market," Transport Policy, Elsevier, pages 272-282.
    4. Chaturvedi, Vaibhav & Kim, Son H., 2015. "Long term energy and emission implications of a global shift to electricity-based public rail transportation system," Energy Policy, Elsevier, vol. 81(C), pages 176-185.
    5. González, Rosa Marina & Marrero, Gustavo A., 2012. "The effect of dieselization in passenger cars emissions for Spanish regions: 1998–2006," Energy Policy, Elsevier, vol. 51(C), pages 213-222.
    6. Klier, Thomas & Linn, Joshua, 2013. "Fuel prices and new vehicle fuel economy—Comparing the United States and Western Europe," Journal of Environmental Economics and Management, Elsevier, vol. 66(2), pages 280-300.
    7. Bénédicte Meurisse & Maxime Le Roy, 2014. "Towards a clean vehicle fleet: from households’ valuation of fuel efficiency to policy implications," EconomiX Working Papers 2014-16, University of Paris Nanterre, EconomiX.
    8. Marletto, Gerardo, 2014. "Car and the city: Socio-technical transition pathways to 2030," Technological Forecasting and Social Change, Elsevier, vol. 87(C), pages 164-178.
    9. Brand, Christian, 2016. "Beyond ‘Dieselgate’: Implications of unaccounted and future air pollutant emissions and energy use for cars in the United Kingdom," Energy Policy, Elsevier, vol. 97(C), pages 1-12.
    10. Liu, Yangwen & Tremblay, Jean-Michel & Cirillo, Cinzia, 2014. "An integrated model for discrete and continuous decisions with application to vehicle ownership, type and usage choices," Transportation Research Part A: Policy and Practice, Elsevier, vol. 69(C), pages 315-328.
    11. Zachariadis, Theodoros, 2013. "Gasoline, diesel and climate policy implications—Insights from the recent evolution of new car sales in Germany," Energy Policy, Elsevier, vol. 54(C), pages 23-32.
    12. Streimikiene, Dalia & Baležentis, Tomas & Baležentienė, Ligita, 2013. "Comparative assessment of road transport technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 611-618.
    13. repec:eee:enepol:v:108:y:2017:i:c:p:121-133 is not listed on IDEAS
    14. repec:eee:eneeco:v:64:y:2017:i:c:p:91-104 is not listed on IDEAS
    15. Gómez, Antonio & Dopazo, César & Fueyo, Norberto, 2014. "The causes of the high energy intensity of the Kazakh economy: A characterization of its energy system," Energy, Elsevier, vol. 71(C), pages 556-568.
    16. G. Marletto, 2013. "Car and the city: Socio-technical pathways to 2030," Working Paper CRENoS 201306, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
    17. Kok, Robert, 2015. "Six years of CO2-based tax incentives for new passenger cars in The Netherlands: Impacts on purchasing behavior trends and CO2 effectiveness," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 137-153.
    18. Li, Yu & Zheng, Ji & Li, Zehong & Yuan, Liang & Yang, Yang & Li, Fujia, 2017. "Re-estimating CO2 emission factors for gasoline passenger cars adding driving behaviour characteristics——A case study of Beijing," Energy Policy, Elsevier, vol. 102(C), pages 353-361.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:trapol:v:18:y:2011:i:2:p:358-372. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/30473/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.