IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v39y2011i11p7257-7264.html
   My bibliography  Save this article

Induced motor vehicle travel from improved fuel efficiency and road expansion

Author

Listed:
  • Su, Qing

Abstract

This paper investigates the impact of improved fuel efficiency and road network expansion on motor vehicle travel using a system dynamic panel data estimator and panel data at the state level for the 2001–2008 period. Our model accounts for endogenous changes in fuel efficiency, congestion, fuel cost per mile, and vehicle stock. Our regression results suggest that the short run rebound effect is 0.0276 while the long run rebound effect is 0.11. The short run effect of road capacity per capita is 0.066 while the long run effect is 0.26.

Suggested Citation

  • Su, Qing, 2011. "Induced motor vehicle travel from improved fuel efficiency and road expansion," Energy Policy, Elsevier, vol. 39(11), pages 7257-7264.
  • Handle: RePEc:eee:enepol:v:39:y:2011:i:11:p:7257-7264
    DOI: 10.1016/j.enpol.2011.08.047
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421511006446
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Arellano, Manuel & Bover, Olympia, 1995. "Another look at the instrumental variable estimation of error-components models," Journal of Econometrics, Elsevier, vol. 68(1), pages 29-51, July.
    2. Hymel, Kent M. & Small, Kenneth A. & Dender, Kurt Van, 2010. "Induced demand and rebound effects in road transport," Transportation Research Part B: Methodological, Elsevier, vol. 44(10), pages 1220-1241, December.
    3. Kenneth A. Small & Kurt Van Dender, 2007. "Fuel Efficiency and Motor Vehicle Travel: The Declining Rebound Effect," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 25-52.
    4. Hausman, Jerry A & Taylor, William E, 1981. "Panel Data and Unobservable Individual Effects," Econometrica, Econometric Society, vol. 49(6), pages 1377-1398, November.
    5. Noland, Robert B., 2001. "Relationships between highway capacity and induced vehicle travel," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(1), pages 47-72, January.
    6. Clifton T Jones, 1993. "Another Look at U.S. Passenger Vehicle Use and the 'Rebound' Effect from Improved Fuel Efficiency," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 99-110.
    7. Barslund, Mikkel & Rand, John & Tarp, Finn & Chiconela, Jacinto, 2007. "Understanding Victimization: The Case of Mozambique," World Development, Elsevier, vol. 35(7), pages 1237-1258, July.
    8. David L. Greene, 1992. "Vehicle Use and Fuel Economy: How Big is the "Rebound" Effect?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 117-144.
    9. Baltagi, Badi H. & Griffin, James M., 1983. "Gasoline demand in the OECD : An application of pooling and testing procedures," European Economic Review, Elsevier, vol. 22(2), pages 117-137, July.
    10. Pinelopi Koujianou Goldberg, 1998. "The Effects of the Corporate Average Fuel Efficiency Standards in the US," Journal of Industrial Economics, Wiley Blackwell, vol. 46(1), pages 1-33, March.
    11. Blundell, Richard & Bond, Stephen, 1998. "Initial conditions and moment restrictions in dynamic panel data models," Journal of Econometrics, Elsevier, vol. 87(1), pages 115-143, August.
    12. Sorrell, Steve & Dimitropoulos, John, 2008. "The rebound effect: Microeconomic definitions, limitations and extensions," Ecological Economics, Elsevier, vol. 65(3), pages 636-649, April.
    13. Manuel Frondel & Jorg Peters & Colin Vance, 2008. "Identifying the Rebound: Evidence from a German Household Panel," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 145-164.
    14. Jonathan Haughton & Soumodip Sarkar, 1996. "Gasoline Tax as a Corrective Tax: Estimates for the United States, 1970-1991," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 103-126.
    15. A. Greening, Lorna & Greene, David L. & Difiglio, Carmen, 2000. "Energy efficiency and consumption -- the rebound effect -- a survey," Energy Policy, Elsevier, vol. 28(6-7), pages 389-401, June.
    16. West, Sarah E., 2004. "Distributional effects of alternative vehicle pollution control policies," Journal of Public Economics, Elsevier, vol. 88(3-4), pages 735-757, March.
    17. Manuel Arellano & Stephen Bond, 1991. "Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations," Review of Economic Studies, Oxford University Press, vol. 58(2), pages 277-297.
    18. Dargay, Joyce, 2007. "The effect of prices and income on car travel in the UK," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(10), pages 949-960, December.
    19. Baltagi, Badi H. & Griffin, James M., 1997. "Pooled estimators vs. their heterogeneous counterparts in the context of dynamic demand for gasoline," Journal of Econometrics, Elsevier, vol. 77(2), pages 303-327, April.
    20. Hansen, Mark & Huang, Yuanlin, 1997. "Road supply and traffic in California urban areas," Transportation Research Part A: Policy and Practice, Elsevier, vol. 31(3), pages 205-218, May.
    21. Su, Qing, 2010. "Travel demand in the US urban areas: A system dynamic panel data approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(2), pages 110-117, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stapleton, Lee & Sorrell, Steve & Schwanen, Tim, 2016. "Estimating direct rebound effects for personal automotive travel in Great Britain," Energy Economics, Elsevier, vol. 54(C), pages 313-325.
    2. Moshiri, Saeed, 2020. "Consumer responses to gasoline price and non-price policies," Energy Policy, Elsevier, vol. 137(C).
    3. Dimitropoulos, Alexandros & Oueslati, Walid & Sintek, Christina, 2018. "The rebound effect in road transport: A meta-analysis of empirical studies," Energy Economics, Elsevier, vol. 75(C), pages 163-179.
    4. Lee, Shin, 2018. "Transport policies, induced traffic and their influence on vehicle emissions in developed and developing countries," Energy Policy, Elsevier, vol. 121(C), pages 264-274.
    5. Jihye Byun & Sungjin Park & Kitae Jang, 2017. "Rebound Effect or Induced Demand? Analyzing the Compound Dual Effects on VMT in the U.S," Sustainability, MDPI, Open Access Journal, vol. 9(2), pages 1-10, February.
    6. Qing Su, 2017. "Travel Demand Management Policy Instruments, Urban Spatial Characteristics, and Household Greenhouse Gas Emissions from Travel in the US Urban Areas," International Journal of Energy Economics and Policy, Econjournals, vol. 7(3), pages 157-166.
    7. O'Rear, Eric G. & Sarica, Kemal & Tyner, Wallace E., 2015. "Analysis of impacts of alternative policies aimed at increasing US energy independence and reducing GHG emissions," Transport Policy, Elsevier, vol. 37(C), pages 121-133.
    8. Su, Qing, 2012. "A quantile regression analysis of the rebound effect: Evidence from the 2009 National Household Transportation Survey in the United States," Energy Policy, Elsevier, vol. 45(C), pages 368-377.
    9. Zolnik, Edmund J., 2018. "Effects of additional capacity on vehicle kilometers of travel in the U.S.: Evidence from National Household Travel Surveys," Journal of Transport Geography, Elsevier, vol. 66(C), pages 1-9.
    10. Liu, Wen & Lund, Henrik & Mathiesen, Brian Vad, 2013. "Modelling the transport system in China and evaluating the current strategies towards the sustainable transport development," Energy Policy, Elsevier, vol. 58(C), pages 347-357.
    11. Le Vine, Scott & Chen, Bingqing (Emily) & Polak, John, 2014. "Does the income elasticity of road traffic depend on the source of income?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 67(C), pages 15-29.
    12. Juan Gomez & José Manuel Vassallo & Israel Herraiz, 2016. "Explaining light vehicle demand evolution in interurban toll roads: a dynamic panel data analysis in Spain," Transportation, Springer, vol. 43(4), pages 677-703, July.
    13. Moshiri, Saeed & Aliyev, Kamil, 2017. "Rebound effect of efficiency improvement in passenger cars on gasoline consumption in Canada," Ecological Economics, Elsevier, vol. 131(C), pages 330-341.
    14. Carlena Cochi Ficano & Patrick Thompson, 2014. "Estimating Rebound Effects in Personal Automotive Transport: Gas Price and the Presence of Hybrids," The American Economist, Sage Publications, vol. 59(2), pages 167-175, November.
    15. Joseph DeSalvo & Qing Su, 2013. "An Empirical Analysis of Determinants of Multi-Dimensional Urban Sprawl," Working Papers 1813, University of South Florida, Department of Economics.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Su, Qing, 2012. "A quantile regression analysis of the rebound effect: Evidence from the 2009 National Household Transportation Survey in the United States," Energy Policy, Elsevier, vol. 45(C), pages 368-377.
    2. Dimitropoulos, Alexandros & Oueslati, Walid & Sintek, Christina, 2018. "The rebound effect in road transport: A meta-analysis of empirical studies," Energy Economics, Elsevier, vol. 75(C), pages 163-179.
    3. Su, Qing, 2010. "Travel demand in the US urban areas: A system dynamic panel data approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(2), pages 110-117, February.
    4. Anas, Alex & Hiramatsu, Tomoru, 2012. "The effect of the price of gasoline on the urban economy: From route choice to general equilibrium," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(6), pages 855-873.
    5. Hymel, Kent M. & Small, Kenneth A. & Dender, Kurt Van, 2010. "Induced demand and rebound effects in road transport," Transportation Research Part B: Methodological, Elsevier, vol. 44(10), pages 1220-1241, December.
    6. Sorrell, Steve & Dimitropoulos, John & Sommerville, Matt, 2009. "Empirical estimates of the direct rebound effect: A review," Energy Policy, Elsevier, vol. 37(4), pages 1356-1371, April.
    7. González, Rosa Marina & Marrero, Gustavo A. & Rodríguez-López, Jesús & Marrero, Ángel S., 2019. "Analyzing CO2 emissions from passenger cars in Europe: A dynamic panel data approach," Energy Policy, Elsevier, vol. 129(C), pages 1271-1281.
    8. Yu, Biying & Zhang, Junyi & Fujiwara, Akimasa, 2013. "Evaluating the direct and indirect rebound effects in household energy consumption behavior: A case study of Beijing," Energy Policy, Elsevier, vol. 57(C), pages 441-453.
    9. Lloro, Alicia & Brownstone, David, 2018. "Vehicle choice and utilization: Improving estimation with partially observed choices and hybrid pairs," Journal of choice modelling, Elsevier, vol. 28(C), pages 137-152.
    10. Wang, Zhaohua & Lu, Milin, 2014. "An empirical study of direct rebound effect for road freight transport in China," Applied Energy, Elsevier, vol. 133(C), pages 274-281.
    11. Jihye Byun & Sungjin Park & Kitae Jang, 2017. "Rebound Effect or Induced Demand? Analyzing the Compound Dual Effects on VMT in the U.S," Sustainability, MDPI, Open Access Journal, vol. 9(2), pages 1-10, February.
    12. Sun, Shanxia & Delgado, Michael S. & Khanna, Neha, 2019. "Hybrid vehicles, social signals and household driving: Implications for miles traveled and gasoline consumption," Energy Economics, Elsevier, vol. 84(C).
    13. Moshiri, Saeed, 2020. "Consumer responses to gasoline price and non-price policies," Energy Policy, Elsevier, vol. 137(C).
    14. Galvin, Ray, 2016. "Rebound effects from speed and acceleration in electric and internal combustion engine cars: An empirical and conceptual investigation," Applied Energy, Elsevier, vol. 172(C), pages 207-216.
    15. Greene, David L., 2012. "Rebound 2007: Analysis of U.S. light-duty vehicle travel statistics," Energy Policy, Elsevier, vol. 41(C), pages 14-28.
    16. Elhorst, J. Paul & Madre, Jean-Loup & Pirotte, Alain, 2020. "Car traffic, habit persistence, cross-sectional dependence, and spatial heterogeneity: New insights using French departmental data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 614-632.
    17. Moshiri, Saeed & Aliyev, Kamil, 2017. "Rebound effect of efficiency improvement in passenger cars on gasoline consumption in Canada," Ecological Economics, Elsevier, vol. 131(C), pages 330-341.
    18. Sun, Shanxia & Delgado, Michael & Khanna, Neha, 2017. "Hybrid Vehicles and Household Driving Behavior: Implications for Miles Traveled and Gasoline Consumption," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258502, Agricultural and Applied Economics Association.
    19. Tingting Wang & Cynthia Chen, 2014. "Impact of fuel price on vehicle miles traveled (VMT): do the poor respond in the same way as the rich?," Transportation, Springer, vol. 41(1), pages 91-105, January.
    20. González, Rosa Marina & Marrero, Gustavo A., 2012. "Induced road traffic in Spanish regions: A dynamic panel data model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(3), pages 435-445.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:39:y:2011:i:11:p:7257-7264. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Nithya Sathishkumar). General contact details of provider: http://www.elsevier.com/locate/enpol .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.