IDEAS home Printed from https://ideas.repec.org/a/kap/transp/v41y2014i1p91-105.html
   My bibliography  Save this article

Impact of fuel price on vehicle miles traveled (VMT): do the poor respond in the same way as the rich?

Author

Listed:
  • Tingting Wang
  • Cynthia Chen

Abstract

The effects of fuel price on travel demand for different income groups reveal the choices and constraints they are faced with. The first purpose of this study is to understand these underlying choices and constraints by examining the variation of fuel price elasticity of vehicle miles travelled (VMT) across income groups. On the other hand, the rebound effect—increase in VMT as a result of improvement in fuel efficiency may offset the negative effect of fuel price on VMT. The second purpose of this study is to compare the relative magnitudes of the fuel price elasticity of VMT and the rebound effect. A system of structural equations with VMT and fuel efficiency (MPG, miles per gallon) as endogenous variables is estimated for households at different income levels from 2009 National Household Travel Survey. Higher income households show greater fuel price elasticity than lower income households. Fuel price elasticities are found to be −0.41 and −0.35 for the two highest income groups, while an elasticity of −0.24 for the lowest income group is identified. The rebound effect is found to be only significant for the lowest income households as 0.7. These findings suggest the potential ability of using fuel price as a tool to affect VMT. The study results also suggest possible negative consequences faced by lower income households given an increase in fuel price and call for more studies in this area. Copyright Springer Science+Business Media New York 2014

Suggested Citation

  • Tingting Wang & Cynthia Chen, 2014. "Impact of fuel price on vehicle miles traveled (VMT): do the poor respond in the same way as the rich?," Transportation, Springer, vol. 41(1), pages 91-105, January.
  • Handle: RePEc:kap:transp:v:41:y:2014:i:1:p:91-105
    DOI: 10.1007/s11116-013-9478-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11116-013-9478-1
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11116-013-9478-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Espey, Molly, 1998. "Gasoline demand revisited: an international meta-analysis of elasticities," Energy Economics, Elsevier, vol. 20(3), pages 273-295, June.
    2. Soman, Dilip, 2001. "Effects of Payment Mechanism on Spending Behavior: The Role of Rehearsal and Immediacy of Payments," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 27(4), pages 460-474, March.
    3. Golob, Thomas F., 2003. "Structural equation modeling for travel behavior research," Transportation Research Part B: Methodological, Elsevier, vol. 37(1), pages 1-25, January.
    4. David L. Greene & James R. Kahn & Robert C. Gibson, 1999. "Fuel Economy Rebound Effect for U.S. Household Vehicles," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 1-31.
    5. Puller, Steven L. & Greening, Lorna A., 1999. "Household adjustment to gasoline price change: an analysis using 9 years of US survey data," Energy Economics, Elsevier, vol. 21(1), pages 37-52, February.
    6. A. Greening, Lorna & Greene, David L. & Difiglio, Carmen, 2000. "Energy efficiency and consumption -- the rebound effect -- a survey," Energy Policy, Elsevier, vol. 28(6-7), pages 389-401, June.
    7. West, Sarah E., 2004. "Distributional effects of alternative vehicle pollution control policies," Journal of Public Economics, Elsevier, vol. 88(3-4), pages 735-757, March.
    8. Bhat, Chandra R. & Sen, Sudeshna & Eluru, Naveen, 2009. "The impact of demographics, built environment attributes, vehicle characteristics, and gasoline prices on household vehicle holdings and use," Transportation Research Part B: Methodological, Elsevier, vol. 43(1), pages 1-18, January.
    9. Binswanger, Mathias, 2001. "Technological progress and sustainable development: what about the rebound effect?," Ecological Economics, Elsevier, vol. 36(1), pages 119-132, January.
    10. William C. Wheaton, 1982. "The Long-Run Structure of Transportation and Gasoline Demand," Bell Journal of Economics, The RAND Corporation, vol. 13(2), pages 439-454, Autumn.
    11. Clifton T Jones, 1993. "Another Look at U.S. Passenger Vehicle Use and the 'Rebound' Effect from Improved Fuel Efficiency," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 99-110.
    12. Feinberg, Richard A, 1986. "Credit Cards as Spending Facilitating Stimuli: A Conditioning Interpretation," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 13(3), pages 348-356, December.
    13. David L. Greene, 1992. "Vehicle Use and Fuel Economy: How Big is the "Rebound" Effect?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 117-144.
    14. Pinelopi Koujianou Goldberg, 1998. "The Effects of the Corporate Average Fuel Efficiency Standards in the US," Journal of Industrial Economics, Wiley Blackwell, vol. 46(1), pages 1-33, March.
    15. Manuel Frondel & Jorg Peters & Colin Vance, 2008. "Identifying the Rebound: Evidence from a German Household Panel," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 145-164.
    16. Hirschman, Elizabeth C, 1979. "Differences in Consumer Purchase Behavior by Credit Card Payment System," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 6(1), pages 58-66, June.
    17. Dahl, Carol & Sterner, Thomas, 1991. "Analysing gasoline demand elasticities: a survey," Energy Economics, Elsevier, vol. 13(3), pages 203-210, July.
    18. Sorrell, Steve & Dimitropoulos, John & Sommerville, Matt, 2009. "Empirical estimates of the direct rebound effect: A review," Energy Policy, Elsevier, vol. 37(4), pages 1356-1371, April.
    19. Jonathan Haughton & Soumodip Sarkar, 1996. "Gasoline Tax as a Corrective Tax: Estimates for the United States, 1970-1991," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 103-126.
    20. Kitamura, Ryuichi, 1990. "Panel Analysis in Transportation Planning: An Overview," University of California Transportation Center, Working Papers qt86v0f7zh, University of California Transportation Center.
    21. Berkhout, Peter H. G. & Muskens, Jos C. & W. Velthuijsen, Jan, 2000. "Defining the rebound effect," Energy Policy, Elsevier, vol. 28(6-7), pages 425-432, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Moshiri, Saeed & Aliyev, Kamil, 2017. "Rebound effect of efficiency improvement in passenger cars on gasoline consumption in Canada," Ecological Economics, Elsevier, vol. 131(C), pages 330-341.
    2. Sakar Hasan Hamza & Qingna Li, 2023. "The Dynamics of US Gasoline Demand and Its Prediction: An Extended Dynamic Model Averaging Approach," Energies, MDPI, vol. 16(12), pages 1-13, June.
    3. Kotval-K, Zeenat & Vojnovic, Igor, 2016. "A socio-ecological exploration into urban form: The environmental costs of travel," Ecological Economics, Elsevier, vol. 128(C), pages 87-98.
    4. Agostini, Claudio A. & Jiménez, Johanna, 2015. "The distributional incidence of the gasoline tax in Chile," Energy Policy, Elsevier, vol. 85(C), pages 243-252.
    5. Tilov, Ivan & Weber, Sylvain, 2023. "Heterogeneity in price elasticity of vehicle kilometers traveled: Evidence from micro-level panel data," Energy Economics, Elsevier, vol. 127(PA).
    6. Goetzke, Frank & Vance, Colin, 2021. "An increasing gasoline price elasticity in the United States?," Energy Economics, Elsevier, vol. 95(C).
    7. Sergey Naumov & David Keith, 2023. "Optimizing the economic and environmental benefits of ride‐hailing and pooling," Production and Operations Management, Production and Operations Management Society, vol. 32(3), pages 904-929, March.
    8. Dimitropoulos, Alexandros & Oueslati, Walid & Sintek, Christina, 2018. "The rebound effect in road transport: A meta-analysis of empirical studies," Energy Economics, Elsevier, vol. 75(C), pages 163-179.
    9. Inge van den Bijgaart & David Klenert & Linus Mattauch & Simona Sulikova, 2024. "Healthy climate, healthy bodies: Optimal fuel taxation and physical activity," Economica, London School of Economics and Political Science, vol. 91(361), pages 93-122, January.
    10. Xiaoquan Wang & Chunfu Shao & Chaoying Yin & Chengxiang Zhuge & Wenjun Li, 2018. "Application of Bayesian Multilevel Models Using Small and Medium Size City in China: The Case of Changchun," Sustainability, MDPI, vol. 10(2), pages 1-15, February.
    11. Barla, Philippe & Herrmann, Markus & Ordas-Criado, Carlos & Miranda-Moreno, Luis F., 2015. "Are Gasoline Demand Elasticities Different across Cities?," Working Papers 208360, University of Laval, Center for Research on the Economics of the Environment, Agri-food, Transports and Energy (CREATE).
    12. Goetzke, Frank & Vance, Colin, 2018. "Is gasoline price elasticity in the United States increasing? Evidence from the 2009 and 2017 national household travel surveys," Ruhr Economic Papers 765, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    13. Hardman, Scott PhD & Chakraborty, Debapriya PhD & Kohn, Eben, 2021. "A Quantitative Investigation into the Impact of Partially Automated Vehicles on Vehicle Miles Travelled in California," Institute of Transportation Studies, Working Paper Series qt58t7674n, Institute of Transportation Studies, UC Davis.
    14. Motamedi, Sina, 2016. "The Effect of Changes in Fuel Prices on the Use of Road Transportation in Ontario," 57th Transportation Research Forum (51st CTRF) Joint Conference, Toronto, Ontario, May 1-4, 2016 319275, Transportation Research Forum.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sorrell, Steve & Dimitropoulos, John & Sommerville, Matt, 2009. "Empirical estimates of the direct rebound effect: A review," Energy Policy, Elsevier, vol. 37(4), pages 1356-1371, April.
    2. Dimitropoulos, Alexandros & Oueslati, Walid & Sintek, Christina, 2018. "The rebound effect in road transport: A meta-analysis of empirical studies," Energy Economics, Elsevier, vol. 75(C), pages 163-179.
    3. Wang, Jiayu & Yu, Shuao & Liu, Tiansen, 2021. "A theoretical analysis of the direct rebound effect caused by energy efficiency improvement of private consumers," Economic Analysis and Policy, Elsevier, vol. 69(C), pages 171-181.
    4. Stela Rubínová, 2011. "Reakce poptávky domácností po energii na zvyšování energetické účinnosti: teorie a její důsledky pro konstrukci empiricky ověřitelných modelů [Reaction of Household Energy Demand to Improvements in," Politická ekonomie, Prague University of Economics and Business, vol. 2011(3), pages 359-378.
    5. Greene, David L., 2012. "Rebound 2007: Analysis of U.S. light-duty vehicle travel statistics," Energy Policy, Elsevier, vol. 41(C), pages 14-28.
    6. Su, Qing, 2012. "A quantile regression analysis of the rebound effect: Evidence from the 2009 National Household Transportation Survey in the United States," Energy Policy, Elsevier, vol. 45(C), pages 368-377.
    7. Moshiri, Saeed & Aliyev, Kamil, 2017. "Rebound effect of efficiency improvement in passenger cars on gasoline consumption in Canada," Ecological Economics, Elsevier, vol. 131(C), pages 330-341.
    8. Sorrell, Steve & Dimitropoulos, John, 2008. "The rebound effect: Microeconomic definitions, limitations and extensions," Ecological Economics, Elsevier, vol. 65(3), pages 636-649, April.
    9. Su, Qing, 2011. "Induced motor vehicle travel from improved fuel efficiency and road expansion," Energy Policy, Elsevier, vol. 39(11), pages 7257-7264.
    10. Anas, Alex & Hiramatsu, Tomoru, 2012. "The effect of the price of gasoline on the urban economy: From route choice to general equilibrium," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(6), pages 855-873.
    11. Freire-González, Jaume, 2011. "Methods to empirically estimate direct and indirect rebound effect of energy-saving technological changes in households," Ecological Modelling, Elsevier, vol. 223(1), pages 32-40.
    12. Moshiri, Saeed, 2020. "Consumer responses to gasoline price and non-price policies," Energy Policy, Elsevier, vol. 137(C).
    13. Zhang, Yue-Jun & Peng, Hua-Rong & Liu, Zhao & Tan, Weiping, 2015. "Direct energy rebound effect for road passenger transport in China: A dynamic panel quantile regression approach," Energy Policy, Elsevier, vol. 87(C), pages 303-313.
    14. Lloro, Alicia & Brownstone, David, 2018. "Vehicle choice and utilization: Improving estimation with partially observed choices and hybrid pairs," Journal of choice modelling, Elsevier, vol. 28(C), pages 137-152.
    15. Frondel, Manuel & Ritter, Nolan & Vance, Colin, 2012. "Heterogeneity in the rebound effect: Further evidence for Germany," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 34(2), pages 461-467.
    16. Freire-González, Jaume & Font Vivanco, David & Puig-Ventosa, Ignasi, 2017. "Economic structure and energy savings from energy efficiency in households," Ecological Economics, Elsevier, vol. 131(C), pages 12-20.
    17. Ghoddusi, Hamed & Roy, Mandira, 2017. "Supply elasticity matters for the rebound effect and its impact on policy comparisons," Energy Economics, Elsevier, vol. 67(C), pages 111-120.
    18. Wang, Zhaohua & Lu, Milin & Wang, Jian-Cai, 2014. "Direct rebound effect on urban residential electricity use: An empirical study in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 124-132.
    19. Marz, Waldemar & Goetzke, Frank, 2022. "CAFE in the city — A spatial analysis of fuel economy standards," Journal of Environmental Economics and Management, Elsevier, vol. 115(C).
    20. Lecca, Patrizio & Swales, Kim & Turner, Karen, 2011. "Rebound Effects from Increased Efficiency in the Use of Energy by UK Households," SIRE Discussion Papers 2011-34, Scottish Institute for Research in Economics (SIRE).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:transp:v:41:y:2014:i:1:p:91-105. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.