IDEAS home Printed from https://ideas.repec.org/p/lvl/creacr/2015-4.html

Some searches may not work properly. We apologize for the inconvenience.

   My bibliography  Save this paper

Are Gasoline Demand Elasticities Different across Cities?

Author

Listed:
  • Philippe Barla
  • Markus Herrmann
  • Carlos Ordas-Criado
  • Luis F. Miranda-Moreno

Abstract

In this paper, we examine the heterogeneity in gasoline demand price and income elasticities across 40 cities in the province of Quebec Canada using quarterly data over the 2004 to 2009 period. We reject the hypothesis of identical elasticities across markets. However, the range of values for the price elasticity, between -0.65 and -0.14, is relatively narrow and confirms that the demand for gasoline is price inelastic. We find evidence that the average price and income elasticity is somewhat larger in markets with public transportation. Furthermore, these markets experience a strong declining trend in gasoline use per capita.

Suggested Citation

  • Philippe Barla & Markus Herrmann & Carlos Ordas-Criado & Luis F. Miranda-Moreno, 2015. "Are Gasoline Demand Elasticities Different across Cities?," Cahiers de recherche CREATE 2015-4, CREATE.
  • Handle: RePEc:lvl:creacr:2015-4
    as

    Download full text from publisher

    File URL: https://www.create.ulaval.ca/sites/create.ulaval.ca/files/Publications/create2015-4.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Kenneth A. Small & Kurt Van Dender, 2007. "Fuel Efficiency and Motor Vehicle Travel: The Declining Rebound Effect," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 25-52.
    2. Wadud, Zia & Noland, Robert B. & Graham, Daniel J., 2010. "A semiparametric model of household gasoline demand," Energy Economics, Elsevier, vol. 32(1), pages 93-101, January.
    3. West, Sarah E. & Williams, R.C.Roberton III, 2004. "Estimates from a consumer demand system: implications for the incidence of environmental taxes," Journal of Environmental Economics and Management, Elsevier, vol. 47(3), pages 535-558, May.
    4. Holmgren, Johan, 2007. "Meta-analysis of public transport demand," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(10), pages 1021-1035, December.
    5. Jonathan E. Hughes & Christopher R. Knittel & Daniel Sperling, 2008. "Evidence of a Shift in the Short-Run Price Elasticity of Gasoline Demand," The Energy Journal, International Association for Energy Economics, vol. 29(1), pages 113-134.
    6. Brons, Martijn & Nijkamp, Peter & Pels, Eric & Rietveld, Piet, 2008. "A meta-analysis of the price elasticity of gasoline demand. A SUR approach," Energy Economics, Elsevier, vol. 30(5), pages 2105-2122, September.
    7. West, Sarah E., 2004. "Distributional effects of alternative vehicle pollution control policies," Journal of Public Economics, Elsevier, vol. 88(3-4), pages 735-757, March.
    8. Tingting Wang & Cynthia Chen, 2014. "Impact of fuel price on vehicle miles traveled (VMT): do the poor respond in the same way as the rich?," Transportation, Springer, vol. 41(1), pages 91-105, January.
    9. Baltagi, Badi H. & Griffin, James M., 1997. "Pooled estimators vs. their heterogeneous counterparts in the context of dynamic demand for gasoline," Journal of Econometrics, Elsevier, vol. 77(2), pages 303-327, April.
    10. Baltagi, Badi H. & Griffin, James M., 1983. "Gasoline demand in the OECD : An application of pooling and testing procedures," European Economic Review, Elsevier, vol. 22(2), pages 117-137, July.
    11. Paulley, Neil & Balcombe, Richard & Mackett, Roger & Titheridge, Helena & Preston, John & Wardman, Mark & Shires, Jeremy & White, Peter, 2006. "The demand for public transport: The effects of fares, quality of service, income and car ownership," Transport Policy, Elsevier, vol. 13(4), pages 295-306, July.
    12. Wadud, Zia & Graham, Daniel J. & Noland, Robert B., 2009. "Modelling fuel demand for different socio-economic groups," Applied Energy, Elsevier, vol. 86(12), pages 2740-2749, December.
    13. Kayser, Hilke A., 2000. "Gasoline demand and car choice: estimating gasoline demand using household information," Energy Economics, Elsevier, vol. 22(3), pages 331-348, June.
    14. Phil Goodwin & Kurt Van Dender, 2013. "'Peak Car' - Themes and Issues," Transport Reviews, Taylor & Francis Journals, vol. 33(3), pages 243-254, May.
    15. Lane, Bradley W., 2012. "A time-series analysis of gasoline prices and public transportation in US metropolitan areas," Journal of Transport Geography, Elsevier, vol. 22(C), pages 221-235.
    16. Dermot Gately, 1992. "Imperfect Price-Reversibility of U.S. Gasoline Demand: Asymmetric Responses to Price Increases and Declines," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 179-208.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Robert V. Parsons, 2021. "Canada as a Case Study for Balanced Presentation to Address Controversy on Emission Reduction Policies," Sustainability, MDPI, vol. 13(14), pages 1-21, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shaw, Charles, 2020. "Econometric Analysis of Demand for Petrol in India, 1966-2019," MPRA Paper 104797, University Library of Munich, Germany.
    2. Elhorst, J. Paul & Madre, Jean-Loup & Pirotte, Alain, 2020. "Car traffic, habit persistence, cross-sectional dependence, and spatial heterogeneity: New insights using French departmental data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 614-632.
    3. Tilov, Ivan & Weber, Sylvain, 2023. "Heterogeneity in price elasticity of vehicle kilometers traveled: Evidence from micro-level panel data," Energy Economics, Elsevier, vol. 127(PA).
    4. Silvia Tiezzi & Stefano F. Verde, 2017. "The signaling effect of gasoline taxes and its distributional implications," RSCAS Working Papers 2017/06, European University Institute.
    5. Silvia Tiezzi & Stefano F. Verde, 2019. "The signaling effect of gasoline taxes and its distributional implications," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 17(2), pages 145-169, June.
    6. Gillingham, Kenneth & Munk-Nielsen, Anders, 2019. "A tale of two tails: Commuting and the fuel price response in driving," Journal of Urban Economics, Elsevier, vol. 109(C), pages 27-40.
    7. Hössinger, Reinhard & Link, Christoph & Sonntag, Axel & Stark, Juliane, 2017. "Estimating the price elasticity of fuel demand with stated preferences derived from a situational approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 103(C), pages 154-171.
    8. Silvia Tiezzi & Stefano F. Verde, 2019. "The signaling effect of gasoline taxes and its distributional implications," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 17(2), pages 145-169, June.
    9. Liu, Weiwei, 2015. "Gasoline taxes or efficiency standards? A heterogeneous household demand analysis," Energy Policy, Elsevier, vol. 80(C), pages 54-64.
    10. Jeyhun I. Mikayilov & Shahriyar Mukhtarov & Hasan Dinçer & Serhat Yüksel & Rıdvan Aydın, 2020. "Elasticity Analysis of Fossil Energy Sources for Sustainable Economies: A Case of Gasoline Consumption in Turkey," Energies, MDPI, vol. 13(3), pages 1-15, February.
    11. Gillingham, Kenneth, 2014. "Identifying the elasticity of driving: Evidence from a gasoline price shock in California," Regional Science and Urban Economics, Elsevier, vol. 47(C), pages 13-24.
    12. Chen, Haotian & Smyth, Russell & Zhang, Xibin, 2017. "A Bayesian sampling approach to measuring the price responsiveness of gasoline demand using a constrained partially linear model," Energy Economics, Elsevier, vol. 67(C), pages 346-354.
    13. Kent M. Hymel & Kenneth Small, 2014. "The Rebound Effect for Automobile Travel:Asymmetric Response to Price Changes and Novel Features of the 2000s," Working Papers 141503, University of California-Irvine, Department of Economics.
    14. Liddle, Brantley & Parker, Steven, 2022. "One more for the road: Reconsidering whether OECD gasoline income and price elasticities have changed over time," Energy Economics, Elsevier, vol. 114(C).
    15. Scott, K. Rebecca, 2015. "Demand and price uncertainty: Rational habits in international gasoline demand," Energy, Elsevier, vol. 79(C), pages 40-49.
    16. Su, Qing, 2011. "Induced motor vehicle travel from improved fuel efficiency and road expansion," Energy Policy, Elsevier, vol. 39(11), pages 7257-7264.
    17. Burke, Paul J. & Nishitateno, Shuhei, 2013. "Gasoline prices, gasoline consumption, and new-vehicle fuel economy: Evidence for a large sample of countries," Energy Economics, Elsevier, vol. 36(C), pages 363-370.
    18. Scott, K. Rebecca, 2011. "Demand and Price Volatility: Rational Habits in International Gasoline Demand," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt2q87432b, Department of Agricultural & Resource Economics, UC Berkeley.
    19. Pablo del Río & Desiderio Romero & Marta Jorge & Mercedes Burguillo, 2012. "Territorial differences for transport fuel demand in Spain: an econometric study," Chapters, in: Larry Kreiser & Ana Yábar Sterling & Pedro Herrera & Janet E. Milne & Hope Ashiabor (ed.), Green Taxation and Environmental Sustainability, chapter 4, pages 56-68, Edward Elgar Publishing.
    20. Liu, Weiwei, 2014. "Modeling gasoline demand in the United States: A flexible semiparametric approach," Energy Economics, Elsevier, vol. 45(C), pages 244-253.

    More about this item

    Keywords

    Gasoline demand; price and income elasticities; random coefficient model; peak car hypothesis;
    All these keywords.

    JEL classification:

    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models
    • D12 - Microeconomics - - Household Behavior - - - Consumer Economics: Empirical Analysis
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:lvl:creacr:2015-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Manuel Paradis (email available below). General contact details of provider: https://edirc.repec.org/data/calvlca.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.