IDEAS home Printed from https://ideas.repec.org/p/cdl/agrebk/qt25q4w08n.html
   My bibliography  Save this paper

Demand and Price Uncertainty: Rational Habits in International Gasoline Demand

Author

Listed:
  • Scott, K. Rebecca

Abstract

The combination of habits and a forward outlook suggests that consumers will be sensitive not justto prices but to price dynamics. In particular, rational habits models suggest 1. that price volatilityand uncertainty will reduce demand for a habit-forming good and 2. that such volatility will dampendemands responsiveness to price. These two implications can be tested by augmenting a traditionalpartial-adjustment or error-correction model of demand. I apply this augmented model to data ongasoline consumption, as rational habits provide a succinct representation for the investment andbehavioral decisions that determine gasoline usage. The trade-o¤s among FE 2SLS, system GMM,and pooled mean group (PMG) estimators are considered, and my preferred estimators provideevidence of rational habits in a panel of 29 countries for the years 1990-2011. Such habits mayhelp to explain some of the cross-country and cross-time variation in totalprice elasticity. Thesehabits also imply that the e¤ect of price uncertainty must be taken into account when projecting theimpacts of potential policies on gasoline consumption.

Suggested Citation

  • Scott, K. Rebecca, 2013. "Demand and Price Uncertainty: Rational Habits in International Gasoline Demand," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt25q4w08n, Department of Agricultural & Resource Economics, UC Berkeley.
  • Handle: RePEc:cdl:agrebk:qt25q4w08n
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/25q4w08n.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Ruth A. Judson & Richard Schmalensee & Thomas M. Stoker, 1999. "Economic Development and the Structure of the Demand for Commercial Energy," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 29-57.
    2. Espey, Molly, 1998. "Gasoline demand revisited: an international meta-analysis of elasticities," Energy Economics, Elsevier, vol. 20(3), pages 273-295, June.
    3. Krichene, Noureddine, 2002. "World crude oil and natural gas: a demand and supply model," Energy Economics, Elsevier, vol. 24(6), pages 557-576, November.
    4. Scott, K. Rebecca, 2012. "Rational habits in gasoline demand," Energy Economics, Elsevier, vol. 34(5), pages 1713-1723.
    5. Bhaskara Rao, B. & Rao, Gyaneshwar, 2009. "Cointegration and the demand for gasoline," Energy Policy, Elsevier, vol. 37(10), pages 3978-3983, October.
    6. Neto, David, 2012. "Testing and estimating time-varying elasticities of Swiss gasoline demand," Energy Economics, Elsevier, vol. 34(6), pages 1755-1762.
    7. Mark Coppejans & Donna Gilleskie & Holger Sieg & Koleman Strumpf, 2007. "Consumer Demand under Price Uncertainty: Empirical Evidence from the Market for Cigarettes," The Review of Economics and Statistics, MIT Press, vol. 89(3), pages 510-521, August.
    8. De Vita, G. & Endresen, K. & Hunt, L.C., 2006. "An empirical analysis of energy demand in Namibia," Energy Policy, Elsevier, vol. 34(18), pages 3447-3463, December.
    9. Narayan, Paresh Kumar & Smyth, Russell, 2007. "A panel cointegration analysis of the demand for oil in the Middle East," Energy Policy, Elsevier, vol. 35(12), pages 6258-6265, December.
    10. Polemis, Michael L., 2006. "Empirical assessment of the determinants of road energy demand in Greece," Energy Economics, Elsevier, vol. 28(3), pages 385-403, May.
    11. Dahl, Carol & Sterner, Thomas, 1991. "Analysing gasoline demand elasticities: a survey," Energy Economics, Elsevier, vol. 13(3), pages 203-210, July.
    12. Kleibergen, Frank & Paap, Richard, 2006. "Generalized reduced rank tests using the singular value decomposition," Journal of Econometrics, Elsevier, vol. 133(1), pages 97-126, July.
    13. Arellano, Manuel & Bover, Olympia, 1995. "Another look at the instrumental variable estimation of error-components models," Journal of Econometrics, Elsevier, vol. 68(1), pages 29-51, July.
    14. Jonathan E. Hughes & Christopher R. Knittel & Daniel Sperling, 2008. "Evidence of a Shift in the Short-Run Price Elasticity of Gasoline Demand," The Energy Journal, International Association for Energy Economics, vol. 29(1), pages 113-134.
    15. David Roodman, 2009. "How to do xtabond2: An introduction to difference and system GMM in Stata," Stata Journal, StataCorp LP, vol. 9(1), pages 86-136, March.
    16. Choi, In, 2001. "Unit root tests for panel data," Journal of International Money and Finance, Elsevier, vol. 20(2), pages 249-272, April.
    17. Storchmann, Karl, 2005. "Long-Run Gasoline demand for passenger cars: the role of income distribution," Energy Economics, Elsevier, vol. 27(1), pages 25-58, January.
    18. Becker, Gary S & Grossman, Michael & Murphy, Kevin M, 1994. "An Empirical Analysis of Cigarette Addiction," American Economic Review, American Economic Association, vol. 84(3), pages 396-418, June.
    19. Bentzen, Jan & Engsted, Tom, 2001. "A revival of the autoregressive distributed lag model in estimating energy demand relationships," Energy, Elsevier, vol. 26(1), pages 45-55.
    20. Shanjun Li & Joshua Linn & Erich Muehlegger, 2014. "Gasoline Taxes and Consumer Behavior," American Economic Journal: Economic Policy, American Economic Association, vol. 6(4), pages 302-342, November.
    21. Dahl, Carol A., 2012. "Measuring global gasoline and diesel price and income elasticities," Energy Policy, Elsevier, vol. 41(C), pages 2-13.
    22. Christiane Baumeister & Gert Peersman, 2013. "The Role Of Time‐Varying Price Elasticities In Accounting For Volatility Changes In The Crude Oil Market," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(7), pages 1087-1109, November.
    23. Pesaran, M. Hashem & Smith, Ron, 1995. "Estimating long-run relationships from dynamic heterogeneous panels," Journal of Econometrics, Elsevier, vol. 68(1), pages 79-113, July.
    24. Im, Kyung So & Pesaran, M. Hashem & Shin, Yongcheol, 2003. "Testing for unit roots in heterogeneous panels," Journal of Econometrics, Elsevier, vol. 115(1), pages 53-74, July.
    25. Zia Wadud & Daniel Graham & Robert Noland, 2009. "A cointegration analysis of gasoline demand in the United States," Applied Economics, Taylor & Francis Journals, vol. 41(26), pages 3327-3336.
    26. Eltony, M. N. & Al-Mutairi, N. H., 1995. "Demand for gasoline in Kuwait : An empirical analysis using cointegration techniques," Energy Economics, Elsevier, vol. 17(3), pages 249-253, July.
    27. David Roodman, 2009. "A Note on the Theme of Too Many Instruments," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 71(1), pages 135-158, February.
    28. David Roodman, 2006. "How to Do xtabond2," North American Stata Users' Group Meetings 2006 8, Stata Users Group.
    29. Alves, Denisard C. O. & De Losso da Silveira Bueno, Rodrigo, 2003. "Short-run, long-run and cross elasticities of gasoline demand in Brazil," Energy Economics, Elsevier, vol. 25(2), pages 191-199, March.
    30. Samimi, Rodney, 1995. "Road transport energy demand in Australia: A cointegration approach," Energy Economics, Elsevier, vol. 17(4), pages 329-339, October.
    31. Edward F. Blackburne III & Mark W. Frank, 2007. "Estimation of nonstationary heterogeneous panels," Stata Journal, StataCorp LP, vol. 7(2), pages 197-208, June.
    32. Bentzen, Jan, 1994. "An empirical analysis of gasoline demand in Denmark using cointegration techniques," Energy Economics, Elsevier, vol. 16(2), pages 139-143, April.
    33. Angelier, Jean Pierre & Sterner, Thomas, 1990. "Tax harmonization for petroleum products in the EC," Energy Policy, Elsevier, vol. 18(6), pages 500-505.
    34. Brons, Martijn & Nijkamp, Peter & Pels, Eric & Rietveld, Piet, 2008. "A meta-analysis of the price elasticity of gasoline demand. A SUR approach," Energy Economics, Elsevier, vol. 30(5), pages 2105-2122, September.
    35. G. S. Maddala & Shaowen Wu, 1999. "A Comparative Study of Unit Root Tests with Panel Data and a New Simple Test," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 61(S1), pages 631-652, November.
    36. Baltagi, Badi H. & Griffin, James M., 1983. "Gasoline demand in the OECD : An application of pooling and testing procedures," European Economic Review, Elsevier, vol. 22(2), pages 117-137, July.
    37. Liddle, Brantley, 2012. "The Systemic, Long-run Relation among Gasoline Demand, Gasoline Price, Income, and Vehicle Ownership in OECD Countries: Evidence from Panel Cointegration and Causality Modeling," MPRA Paper 52081, University Library of Munich, Germany.
    38. Lutz Kilian, 2010. "Explaining Fluctuations in Gasoline Prices: A Joint Model of the Global Crude Oil Market and the U.S. Retail Gasoline Market," The Energy Journal, , vol. 31(2), pages 87-112, April.
    39. Manuel Arellano & Stephen Bond, 1991. "Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 58(2), pages 277-297.
    40. Edward F. Blackburne III & Mark W. Frank, 2007. "XTPMG: Stata module for estimation of nonstationary heterogeneous panels," Statistical Software Components S456868, Boston College Department of Economics.
    41. Judson, Ruth A. & Owen, Ann L., 1999. "Estimating dynamic panel data models: a guide for macroeconomists," Economics Letters, Elsevier, vol. 65(1), pages 9-15, October.
    42. Blundell, Richard & Bond, Stephen, 1998. "Initial conditions and moment restrictions in dynamic panel data models," Journal of Econometrics, Elsevier, vol. 87(1), pages 115-143, August.
    43. Richard Blundell & Stephen Bond & Frank Windmeijer, 2000. "Estimation in dynamic panel data models: improving on the performance of the standard GMM estimator," IFS Working Papers W00/12, Institute for Fiscal Studies.
    44. Baltagi, Badi H. & Griffin, James M., 1997. "Pooled estimators vs. their heterogeneous counterparts in the context of dynamic demand for gasoline," Journal of Econometrics, Elsevier, vol. 77(2), pages 303-327, April.
    45. Nguyen-Van, Phu, 2010. "Energy consumption and income: A semiparametric panel data analysis," Energy Economics, Elsevier, vol. 32(3), pages 557-563, May.
    46. World Bank, 2013. "World Development Indicators 2013," World Bank Publications - Books, The World Bank Group, number 13191.
    47. Holtz-Eakin, Douglas & Newey, Whitney & Rosen, Harvey S, 1988. "Estimating Vector Autoregressions with Panel Data," Econometrica, Econometric Society, vol. 56(6), pages 1371-1395, November.
    48. Chi‐Young Choi & Nelson C. Mark & Donggyu Sul, 2010. "Bias Reduction in Dynamic Panel Data Models by Common Recursive Mean Adjustment," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 72(5), pages 567-599, October.
    49. Storchmann, Karl, 2005. "Erratum to "Long-run gasoline demand for passenger cars: The role of income distribution" [Energy Economics, 27 (1), 25-58]," Energy Economics, Elsevier, vol. 27(4), pages 687-687, July.
    50. Nickell, Stephen J, 1981. "Biases in Dynamic Models with Fixed Effects," Econometrica, Econometric Society, vol. 49(6), pages 1417-1426, November.
    51. Kiviet, Jan F., 1995. "On bias, inconsistency, and efficiency of various estimators in dynamic panel data models," Journal of Econometrics, Elsevier, vol. 68(1), pages 53-78, July.
    52. Windmeijer, Frank, 2005. "A finite sample correction for the variance of linear efficient two-step GMM estimators," Journal of Econometrics, Elsevier, vol. 126(1), pages 25-51, May.
    53. Stephen R. Bond, 2002. "Dynamic panel data models: a guide to micro data methods and practice," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 1(2), pages 141-162, August.
    54. repec:bla:obuest:v:61:y:1999:i:0:p:631-52 is not listed on IDEAS
    55. Ahn, Seung C. & Schmidt, Peter, 1995. "Efficient estimation of models for dynamic panel data," Journal of Econometrics, Elsevier, vol. 68(1), pages 5-27, July.
    56. Akinboade, Oludele A. & Ziramba, Emmanuel & Kumo, Wolassa L., 2008. "The demand for gasoline in South Africa: An empirical analysis using co-integration techniques," Energy Economics, Elsevier, vol. 30(6), pages 3222-3229, November.
    57. Nicholas Rivers & Brandon Schaufele, 2012. "Carbon Tax Salience and Gasoline Demand," Working Papers 1211E, University of Ottawa, Department of Economics.
    58. Badi H. Baltagi & Chihwa Kao, 2000. "Nonstationary Panels, Cointegration in Panels and Dynamic Panels: A Survey," Center for Policy Research Working Papers 16, Center for Policy Research, Maxwell School, Syracuse University.
    59. K. Rebecca Scott, 2012. "Rational Habits and Uncertain Prices: Simulating Gasoline Consumption Behavior," Economics Series Working Papers 596, University of Oxford, Department of Economics.
    60. Ramanathan, R., 1999. "Short- and long-run elasticities of gasoline demand in India: An empirical analysis using cointegration techniques," Energy Economics, Elsevier, vol. 21(4), pages 321-330, August.
    61. Stephen Bond, 2002. "Dynamic panel data models: a guide to microdata methods and practice," CeMMAP working papers CWP09/02, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    62. Kui-Yin Cheung & Elspeth Thomson, 2004. "The Demand for Gasoline in China: A Cointegration Analysis," Journal of Applied Statistics, Taylor & Francis Journals, vol. 31(5), pages 533-544.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chang, Kai & Zhang, Chao, 2018. "Asymmetric dependence structure between emissions allowances and wholesale diesel/gasoline prices in emerging China's emissions trading scheme pilots," Energy, Elsevier, vol. 164(C), pages 124-136.
    2. Bakhat, Mohcine & Labandeira, Xavier & Labeaga, José M. & López-Otero, Xiral, 2017. "Elasticities of transport fuels at times of economic crisis: An empirical analysis for Spain," Energy Economics, Elsevier, vol. 68(S1), pages 66-80.
    3. Inge van den Bijgaart, 2018. "Too Slow a Change? Deep Habits, Consumption Shifts and Transitory Tax Policy," CESifo Working Paper Series 6958, CESifo.
    4. Filippini, Massimo & Hirl, Bettina & Masiero, Giuliano, 2018. "Habits and rational behaviour in residential electricity demand," Resource and Energy Economics, Elsevier, vol. 52(C), pages 137-152.
    5. Schaufele, Brandon, 2019. "Demand Shocks Change the Excess Burden From Carbon Taxes," MPRA Paper 92132, University Library of Munich, Germany.
    6. Rivers, Nicholas & Schaufele, Brandon, 2017. "Gasoline price and new vehicle fuel efficiency: Evidence from Canada," Energy Economics, Elsevier, vol. 68(C), pages 454-465.
    7. van den Bijgaart, Inge, 2016. "Essays in environmental economics and policy," Other publications TiSEM 298bee2a-cb08-4173-9fe1-8, Tilburg University, School of Economics and Management.
    8. van den Bijgaart, I.M., 2017. "Too slow a change? Deep habits, consumption shifts and transitory tax," Working Papers in Economics 701, University of Gothenburg, Department of Economics.
    9. Zhao, Zhen-yu & Zhu, Jiang & Xia, Bo, 2016. "Multi-fractal fluctuation features of thermal power coal price in China," Energy, Elsevier, vol. 117(P1), pages 10-18.
    10. Verde, Stefano F. & Di Cosmo, Valeria, 2024. "A dynamic carbon tax on gasoline," MPRA Paper 120485, University Library of Munich, Germany.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Scott, K. Rebecca, 2011. "Demand and Price Volatility: Rational Habits in International Gasoline Demand," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt2q87432b, Department of Agricultural & Resource Economics, UC Berkeley.
    2. Bakhat, Mohcine & Labandeira, Xavier & Labeaga, José M. & López-Otero, Xiral, 2017. "Elasticities of transport fuels at times of economic crisis: An empirical analysis for Spain," Energy Economics, Elsevier, vol. 68(S1), pages 66-80.
    3. Mohcine Bakhat & José M. Labeaga & Xavier Labandeira & Xiral Lñpez, 2013. "Economic Crisis and Elasticities of Car Fuels: Evidence for Spain," Working Papers fa15-2013, Economics for Energy.
    4. Rosa M. González-Marrero & Rosa M. Lorenzo-Alegría & Gustavo A. Marrero, 2011. "Gasoline and Diesel Consumption for Road Transport in Spain: a Dynamic Panel Data Approach," Economic Reports 04-2011, FEDEA.
    5. Peñasco, Cristina & del Río, Pablo & Romero-Jordán, Desiderio, 2017. "Gas and electricity demand in Spanish manufacturing industries: An analysis using homogeneous and heterogeneous estimators," Utilities Policy, Elsevier, vol. 45(C), pages 45-60.
    6. Rebecca K Scott, 2014. "Tax Salience vs. Price Uncertainty: Disentangling the Effects of Attention and Rational Habits," Economics Series Working Papers 736, University of Oxford, Department of Economics.
    7. Zimmer, Anne & Koch, Nicolas, 2017. "Fuel consumption dynamics in Europe: Tax reform implications for air pollution and carbon emissions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 106(C), pages 22-50.
    8. Havranek, Tomas & Irsova, Zuzana & Janda, Karel, 2012. "Demand for gasoline is more price-inelastic than commonly thought," Energy Economics, Elsevier, vol. 34(1), pages 201-207.
    9. Santos, Gervásio F., 2013. "Fuel demand in Brazil in a dynamic panel data approach," Energy Economics, Elsevier, vol. 36(C), pages 229-240.
    10. Roberto Dell'Anno & Adalgiso Amendola, 2015. "Social Exclusion and Economic Growth: An Empirical Investigation in European Economies," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 61(2), pages 274-301, June.
    11. Ghoddusi, Hamed & Morovati, Mohammad & Rafizadeh, Nima, 2019. "Foreign Exchange Shocks and Gasoline Consumption," Energy Economics, Elsevier, vol. 84(C).
    12. Jimy Ferrer Carbonell & Roberto Escalante Semerena, 2014. "Demanda de gasolina en la zona metropolitana del Valle de México: análisis empírico de la reducción del subsidio," Revista de Economía del Rosario, Universidad del Rosario, June.
    13. Scott, K. Rebecca, 2012. "Rational habits in gasoline demand," Energy Economics, Elsevier, vol. 34(5), pages 1713-1723.
    14. Pock, Markus, 2010. "Gasoline demand in Europe: New insights," Energy Economics, Elsevier, vol. 32(1), pages 54-62, January.
    15. Samargandi, Nahla & Fidrmuc, Jan & Ghosh, Sugata, 2015. "Is the Relationship Between Financial Development and Economic Growth Monotonic? Evidence from a Sample of Middle-Income Countries," World Development, Elsevier, vol. 68(C), pages 66-81.
    16. Melo, Patricia C. & Ramli, Ahmad Razi, 2014. "Estimating fuel demand elasticities to evaluate CO2 emissions: Panel data evidence for the Lisbon Metropolitan Area," Transportation Research Part A: Policy and Practice, Elsevier, vol. 67(C), pages 30-46.
    17. Gharehgozli, Orkideh, 2021. "An empirical comparison between a regression framework and the Synthetic Control Method," The Quarterly Review of Economics and Finance, Elsevier, vol. 81(C), pages 70-81.
    18. Gulati, Rachita & Goswami, Anju & Kumar, Sunil, 2019. "What drives credit risk in the Indian banking industry? An empirical investigation," Economic Systems, Elsevier, vol. 43(1), pages 42-62.
    19. Juan Federico & Joan-Lluis Capelleras, 2015. "The heterogeneous dynamics between growth and profits: the case of young firms," Small Business Economics, Springer, vol. 44(2), pages 231-253, February.
    20. Burke, Paul J. & Nishitateno, Shuhei, 2013. "Gasoline prices, gasoline consumption, and new-vehicle fuel economy: Evidence for a large sample of countries," Energy Economics, Elsevier, vol. 36(C), pages 363-370.

    More about this item

    Keywords

    Social and Behavioral Sciences; gasoline demand; rational habits; price elasticity;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:agrebk:qt25q4w08n. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/dabrkus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.