IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v55y2011i10p2871-2879.html

Some searches may not work properly. We apologize for the inconvenience.

   My bibliography  Save this article

Semiparametric regression with shape-constrained penalized splines

Author

Listed:
  • Hazelton, Martin L.
  • Turlach, Berwin A.

Abstract

In semiparametric regression models, penalized splines can be used to describe complex, non-linear relationships between the mean response and covariates. In some applications it is desirable to restrict the shape of the splines so as to enforce properties such as monotonicity or convexity on regression functions. We describe a method for imposing such shape constraints on penalized splines within a linear mixed model framework. We employ Markov chain Monte Carlo (MCMC) methods for model fitting, using a truncated prior distribution to impose the requisite shape restrictions. We develop a computationally efficient MCMC sampler by using a correspondingly truncated multivariate normal proposal distribution, which is a restricted version of the approximate sampling distribution of the model parameters in an unconstrained version of the model. We also describe a cheap approximation to this methodology that can be applied for shape-constrained scatterplot smoothing. Our methods are illustrated through two applications, the first involving the length of dugongs and the second concerned with growth curves for sitka spruce trees.

Suggested Citation

  • Hazelton, Martin L. & Turlach, Berwin A., 2011. "Semiparametric regression with shape-constrained penalized splines," Computational Statistics & Data Analysis, Elsevier, vol. 55(10), pages 2871-2879, October.
  • Handle: RePEc:eee:csdana:v:55:y:2011:i:10:p:2871-2879
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947311001472
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J. O. Ramsay, 1998. "Estimating smooth monotone functions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 60(2), pages 365-375.
    2. Matzkin, Rosa L, 1991. "Semiparametric Estimation of Monotone and Concave Utility Functions for Polychotomous Choice Models," Econometrica, Econometric Society, vol. 59(5), pages 1315-1327, September.
    3. Marx, Brian D. & Eilers, Paul H. C., 1998. "Direct generalized additive modeling with penalized likelihood," Computational Statistics & Data Analysis, Elsevier, vol. 28(2), pages 193-209, August.
    4. E. Mammen & C. Thomas‐Agnan, 1999. "Smoothing Splines and Shape Restrictions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 26(2), pages 239-252, June.
    5. repec:cup:cbooks:9780521780506 is not listed on IDEAS
    6. Thomas S. Shively & Thomas W. Sager & Stephen G. Walker, 2009. "A Bayesian approach to non‐parametric monotone function estimation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(1), pages 159-175, January.
    7. Brezger, Andreas & Steiner, Winfried J., 2008. "Monotonic Regression Based on Bayesian PSplines: An Application to Estimating Price Response Functions From Store-Level Scanner Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 90-104, January.
    8. Brian Neelon & David B. Dunson, 2004. "Bayesian Isotonic Regression and Trend Analysis," Biometrics, The International Biometric Society, vol. 60(2), pages 398-406, June.
    9. repec:cup:cbooks:9780521785167 is not listed on IDEAS
    10. Brezger, Andreas & Lang, Stefan, 2006. "Generalized structured additive regression based on Bayesian P-splines," Computational Statistics & Data Analysis, Elsevier, vol. 50(4), pages 967-991, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abdelaati Daouia & Hohsuk Noh & Byeong U. Park, 2016. "Data envelope fitting with constrained polynomial splines," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(1), pages 3-30, January.
    2. Tutz, Gerhard & Berger, Moritz, 2020. "The effect of explanatory variables on income: A tool that allows a closer look at the differences in income," Econometrics and Statistics, Elsevier, vol. 16(C), pages 28-41.
    3. Minggen Lu, 2015. "Spline estimation of generalised monotonic regression," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 27(1), pages 19-39, March.
    4. Kevin Murray & Samuel Müller & Berwin Turlach, 2013. "Revisiting fitting monotone polynomials to data," Computational Statistics, Springer, vol. 28(5), pages 1989-2005, October.
    5. Claudia Köllmann & Björn Bornkamp & Katja Ickstadt, 2014. "Unimodal regression using Bernstein–Schoenberg splines and penalties," Biometrics, The International Biometric Society, vol. 70(4), pages 783-793, December.
    6. Colubi, Ana & Domínguez-Menchero, J. Santos & González-Rodríguez, Gil, 2014. "Testing constancy in monotone response models," Computational Statistics & Data Analysis, Elsevier, vol. 72(C), pages 45-56.
    7. Ng, Kenyon & Turlach, Berwin A. & Murray, Kevin, 2019. "A flexible sequential Monte Carlo algorithm for parametric constrained regression," Computational Statistics & Data Analysis, Elsevier, vol. 138(C), pages 13-26.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christophe Abraham & Khader Khadraoui, 2015. "Bayesian regression with B-splines under combinations of shape constraints and smoothness properties," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 69(2), pages 150-170, May.
    2. Wu, Ximing & Sickles, Robin, 2018. "Semiparametric estimation under shape constraints," Econometrics and Statistics, Elsevier, vol. 6(C), pages 74-89.
    3. Shively, Thomas S. & Kockelman, Kara & Damien, Paul, 2010. "A Bayesian semi-parametric model to estimate relationships between crash counts and roadway characteristics," Transportation Research Part B: Methodological, Elsevier, vol. 44(5), pages 699-715, June.
    4. Gabriel Riutort-Mayol & Virgilio Gómez-Rubio & José Luis Lerma & Julio M. del Hoyo-Meléndez, 2020. "Correlated Functional Models with Derivative Information for Modeling Microfading Spectrometry Data on Rock Art Paintings," Mathematics, MDPI, vol. 8(12), pages 1-25, December.
    5. Mary Meyer & Amber Hackstadt & Jennifer Hoeting, 2011. "Bayesian estimation and inference for generalised partial linear models using shape-restricted splines," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 23(4), pages 867-884.
    6. John Haslett & Andrew Parnell, 2008. "A simple monotone process with application to radiocarbon‐dated depth chronologies," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 57(4), pages 399-418, September.
    7. Eduardo L. Montoya & Wendy Meiring, 2016. "An F-type test for detecting departure from monotonicity in a functional linear model," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(2), pages 322-337, June.
    8. Simon N. Wood & Natalya Pya & Benjamin Säfken, 2016. "Smoothing Parameter and Model Selection for General Smooth Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1548-1563, October.
    9. Strasak, Alexander M. & Umlauf, Nikolaus & Pfeiffer, Ruth M. & Lang, Stefan, 2011. "Comparing penalized splines and fractional polynomials for flexible modelling of the effects of continuous predictor variables," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1540-1551, April.
    10. Marco Bottone & Lea Petrella & Mauro Bernardi, 2021. "Unified Bayesian conditional autoregressive risk measures using the skew exponential power distribution," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(3), pages 1079-1107, September.
    11. Ait-Sahalia, Yacine & Duarte, Jefferson, 2003. "Nonparametric option pricing under shape restrictions," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 9-47.
    12. Belitz, Christiane & Lang, Stefan, 2008. "Simultaneous selection of variables and smoothing parameters in structured additive regression models," Computational Statistics & Data Analysis, Elsevier, vol. 53(1), pages 61-81, September.
    13. Roca-Pardinas, Javier & Cadarso-Suarez, Carmen & Tahoces, Pablo G. & Lado, Maria J., 2008. "Assessing continuous bivariate effects among different groups through nonparametric regression models: An application to breast cancer detection," Computational Statistics & Data Analysis, Elsevier, vol. 52(4), pages 1958-1970, January.
    14. Pang Du & Christopher F. Parmeter & Jeffrey S. Racine, 2012. "Nonparametric Kernel Regression with Multiple Predictors and Multiple Shape Constraints," Department of Economics Working Papers 2012-08, McMaster University.
    15. C Rohrbeck & D A Costain & A Frigessi, 2018. "Bayesian spatial monotonic multiple regression," Biometrika, Biometrika Trust, vol. 105(3), pages 691-707.
    16. Levent Kutlu & Shasha Liu & Robin C. Sickles, 2022. "Cost, Revenue, and Profit Function Estimates," Springer Books, in: Subhash C. Ray & Robert G. Chambers & Subal C. Kumbhakar (ed.), Handbook of Production Economics, chapter 16, pages 641-679, Springer.
    17. Bernardi, Mauro & Bottone, Marco & Petrella, Lea, 2018. "Bayesian quantile regression using the skew exponential power distribution," Computational Statistics & Data Analysis, Elsevier, vol. 126(C), pages 92-111.
    18. Alexander Henzi & Johanna F. Ziegel & Tilmann Gneiting, 2021. "Isotonic distributional regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(5), pages 963-993, November.
    19. Shively, Thomas S. & Walker, Stephen G. & Damien, Paul, 2011. "Nonparametric function estimation subject to monotonicity, convexity and other shape constraints," Journal of Econometrics, Elsevier, vol. 161(2), pages 166-181, April.
    20. Hall, Peter & Yatchew, Adonis, 2005. "Unified approach to testing functional hypotheses in semiparametric contexts," Journal of Econometrics, Elsevier, vol. 127(2), pages 225-252, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:55:y:2011:i:10:p:2871-2879. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.