IDEAS home Printed from
   My bibliography  Save this article

Monotonic Regression Based on Bayesian PSplines: An Application to Estimating Price Response Functions From Store-Level Scanner Data


  • Brezger, Andreas
  • Steiner, Winfried J.


No abstract is available for this item.

Suggested Citation

  • Brezger, Andreas & Steiner, Winfried J., 2008. "Monotonic Regression Based on Bayesian PSplines: An Application to Estimating Price Response Functions From Store-Level Scanner Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 90-104, January.
  • Handle: RePEc:bes:jnlbes:v:26:y:2008:p:90-104

    Download full text from publisher

    File URL:
    File Function: full text
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Giordani, Paolo & Soderlind, Paul, 2003. "Inflation forecast uncertainty," European Economic Review, Elsevier, vol. 47(6), pages 1037-1059, December.
    2. Jushan Bai & Pierre Perron, 1998. "Estimating and Testing Linear Models with Multiple Structural Changes," Econometrica, Econometric Society, vol. 66(1), pages 47-78, January.
    3. Christopher A. Sims, 1993. "A Nine-Variable Probabilistic Macroeconomic Forecasting Model," NBER Chapters,in: Business Cycles, Indicators and Forecasting, pages 179-212 National Bureau of Economic Research, Inc.
    4. Timothy Cogley & Thomas J. Sargent, 2002. "Evolving Post-World War II U.S. Inflation Dynamics," NBER Chapters,in: NBER Macroeconomics Annual 2001, Volume 16, pages 331-388 National Bureau of Economic Research, Inc.
    5. George A. Akerlof & William T. Dickens & George L. Perry, 2000. "Near-Rational Wage and Price Setting and the Long-Run Phillips Curve," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 31(1), pages 1-60.
    6. David J. Nott & Robert Kohn, 2005. "Adaptive sampling for Bayesian variable selection," Biometrika, Biometrika Trust, vol. 92(4), pages 747-763, December.
    7. Bruce E. Hansen, 2001. "The New Econometrics of Structural Change: Dating Breaks in U.S. Labour Productivity," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 117-128, Fall.
    8. Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1998. "Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models," Review of Economic Studies, Oxford University Press, vol. 65(3), pages 361-393.
    9. Giordani, Paolo & Kohn, Robert & van Dijk, Dick, 2007. "A unified approach to nonlinearity, structural change, and outliers," Journal of Econometrics, Elsevier, vol. 137(1), pages 112-133, March.
    10. M. Hashem Pesaran & Davide Pettenuzzo & Allan Timmermann, 2006. "Forecasting Time Series Subject to Multiple Structural Breaks," Review of Economic Studies, Oxford University Press, vol. 73(4), pages 1057-1084.
    11. Lawrence J. Christiano & Terry J. Fitzgerald, 2003. "Inflation and monetary policy in the twentieth century," Economic Perspectives, Federal Reserve Bank of Chicago, issue Q I, pages 22-45.
    12. Stock, James H & Watson, Mark W, 1996. "Evidence on Structural Instability in Macroeconomic Time Series Relations," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(1), pages 11-30, January.
    13. Thomas Sargent & Noah Williams & Tao Zha, 2009. "The Conquest of South American Inflation," Journal of Political Economy, University of Chicago Press, vol. 117(2), pages 211-256, April.
    14. J Huston McCulloch, 2000. "State-Space Times Series Modeling of Structural Breaks," Working Papers 00-11, Ohio State University, Department of Economics.
    15. Gary Koop & Simon M. Potter, 2004. "Forecasting and estimating multiple change-point models with an unknown number of change points," Staff Reports 196, Federal Reserve Bank of New York.
    16. Schorfheide, Frank, 2000. "Forecasting Economic Time Series," Econometric Theory, Cambridge University Press, vol. 16(03), pages 441-450, June.
    17. Chib, Siddhartha, 1998. "Estimation and comparison of multiple change-point models," Journal of Econometrics, Elsevier, vol. 86(2), pages 221-241, June.
    18. Carter, C.K. & Kohn, R., "undated". "Semiparametric Bayesian inference for time series with mixed spectra," Statistics Working Paper _005, Australian Graduate School of Management.
    19. Gary Koop & Simon M. Potter, 2009. "Prior Elicitation In Multiple Change-Point Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 50(3), pages 751-772, August.
    20. Michael P. Clements & David F. Hendry, 2001. "Forecasting Non-Stationary Economic Time Series," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262531895, January.
    21. J. Durbin, 2002. "A simple and efficient simulation smoother for state space time series analysis," Biometrika, Biometrika Trust, vol. 89(3), pages 603-616, August.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Anett Weber & Winfried J. Steiner & Stefan Lang, 2017. "A comparison of semiparametric and heterogeneous store sales models for optimal category pricing," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(2), pages 403-445, March.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bes:jnlbes:v:26:y:2008:p:90-104. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.