IDEAS home Printed from
   My bibliography  Save this article

A comparison of semiparametric and heterogeneous store sales models for optimal category pricing


  • Anett Weber

    () (Institute of Management and Economics, Clausthal University of Technology)

  • Winfried J. Steiner

    () (Institute of Management and Economics, Clausthal University of Technology)

  • Stefan Lang

    () (Faculty of Economics and Statistics, University of Innsbruck)


Abstract Category management requires sales response models helping to simultaneously estimate marketing mix effects for all brands of a product category. We, therefore, develop a general heterogeneity seemingly unrelated regression (SUR) model accommodating correlations between sales across brands. This model contains a latent class SUR model, the well-known hierarchical Bayesian SUR model and the homogeneous SUR model as special cases. We further propose a hierarchical Bayesian semiparametric SUR model based on Bayesian P-splines which comprises a homogeneous semiparametric SUR model as nested version. The results of an empirical application with store-level scanner data indicate that the flexible SUR approaches of modeling price response clearly outperform the various parametric (homogeneous and heterogeneous) SUR approaches with respect to not only predictive validity but also total expected category profits. In particular, functional flexibility turns out to be the primary driver for improving the predictive performance of a store sales model as heterogeneity pays off only once functional flexibility has been accounted for. Furthermore, since both flexible SUR models perform nearly equally well with respect to expected category profits, a uniform pricing strategy which is much less complex to implement than micromarketing can be recommended for our data.

Suggested Citation

  • Anett Weber & Winfried J. Steiner & Stefan Lang, 2017. "A comparison of semiparametric and heterogeneous store sales models for optimal category pricing," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(2), pages 403-445, March.
  • Handle: RePEc:spr:orspec:v:39:y:2017:i:2:d:10.1007_s00291-016-0459-6
    DOI: 10.1007/s00291-016-0459-6

    Download full text from publisher

    File URL:
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Daniel Levy & Hainpeng (Allan) Chen & Sourav RayAuthor-Name: Mark Bergen, 2004. "Asymmetric Price Adjustment in the Small: An Implication of Rational Inattention," Emory Economics 0408, Department of Economics, Emory University (Atlanta).
    2. K. Sudhir & Vrinda Kadiyali & Vithala R. Rao, 2001. "Structural Analysis of Manufacturer Pricing in the Presence of a Strategic Retailer," Yale School of Management Working Papers ysm229, Yale School of Management.
    3. Harald J. van Heerde & Peter S. H. Leeflang & Dick R. Wittink, 2002. "How Promotions Work: Scan Pro-Based Evolutionary Model Building," Schmalenbach Business Review (sbr), LMU Munich School of Management, vol. 54(3), pages 198-220, July.
    4. repec:eee:jouret:v:85:y:2009:i:1:p:56-70 is not listed on IDEAS
    5. Alan L. Montgomery & Eric T. Bradlow, 1999. "Why Analyst Overconfidence About the Functional Form of Demand Models Can Lead to Overpricing," Marketing Science, INFORMS, vol. 18(4), pages 569-583.
    6. repec:eee:jouret:v:87:y:2011:i:s1:p:s29-s42 is not listed on IDEAS
    7. repec:eee:jouret:v:85:y:2009:i:1:p:42-55 is not listed on IDEAS
    8. Lang, Stefan & Steiner, Winfried J. & Weber, Anett & Wechselberger, Peter, 2015. "Accommodating heterogeneity and nonlinearity in price effects for predicting brand sales and profits," European Journal of Operational Research, Elsevier, vol. 246(1), pages 232-241.
    9. Smith, Michael & Kohn, Robert, 2000. "Nonparametric seemingly unrelated regression," Journal of Econometrics, Elsevier, vol. 98(2), pages 257-281, October.
    10. ., 2007. "The 1930s," Chapters,in: Pioneers of Industrial Organization, chapter 11 Edward Elgar Publishing.
    11. Mebane Jr., Walter R. & Sekhon, Jasjeet S., 2011. "Genetic Optimization Using Derivatives: The rgenoud Package for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 42(i11).
    12. Brezger, Andreas & Steiner, Winfried J., 2008. "Monotonic Regression Based on Bayesian PSplines: An Application to Estimating Price Response Functions From Store-Level Scanner Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 90-104, January.
    13. Puneet Manchanda & Asim Ansari & Sunil Gupta, 1999. "The “Shopping Basket”: A Model for Multicategory Purchase Incidence Decisions," Marketing Science, INFORMS, vol. 18(2), pages 95-114.
    14. Jorge M. Silva-Risso & Randolph E. Bucklin & Donald G. Morrison, 1999. "A Decision Support System for Planning Manufacturers' Sales Promotion Calendars," Marketing Science, INFORMS, vol. 18(3), pages 274-300.
    15. Dobson, Paul W. & Waterson, Michael, 2008. "Chain-Store Competition: Customized vs. Uniform Pricing," The Warwick Economics Research Paper Series (TWERPS) 840, University of Warwick, Department of Economics.
    16. Venkatesh Shankar & Ruth N. Bolton, 2004. "An Empirical Analysis of Determinants of Retailer Pricing Strategy," Marketing Science, INFORMS, vol. 23(1), pages 28-49, May.
    17. Peter Lenk & Wayne DeSarbo, 2000. "Bayesian inference for finite mixtures of generalized linear models with random effects," Psychometrika, Springer;The Psychometric Society, vol. 65(1), pages 93-119, March.
    18. Gerard J. Tellis & Fred S. Zufryden, 1995. "Tackling the Retailer Decision Maze: Which Brands to Discount, How Much, When and Why?," Marketing Science, INFORMS, vol. 14(3), pages 271-299.
    19. K. Sudhir, 2001. "Structural Analysis of Manufacturer Pricing in the Presence of a Strategic Retailer," Marketing Science, INFORMS, vol. 20(3), pages 244-264, October.
    20. Kim, Byung-Do & Blattberg, Robert C & Rossi, Peter E, 1995. "Modeling the Distribution of Price Sensitivity and Implications for Optimal Retail Pricing," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 291-303, July.
    21. Peter E. Rossi, 2014. "Invited Paper —Even the Rich Can Make Themselves Poor: A Critical Examination of IV Methods in Marketing Applications," Marketing Science, INFORMS, vol. 33(5), pages 655-672, September.
    22. Vrinda Kadiyali & Pradeep Chintagunta & Naufel Vilcassim, 2000. "Manufacturer-Retailer Channel Interactions and Implications for Channel Power: An Empirical Investigation of Pricing in a Local Market," Marketing Science, INFORMS, vol. 19(2), pages 127-148, September.
    23. Alan L. Montgomery, 1997. "Creating Micro-Marketing Pricing Strategies Using Supermarket Scanner Data," Marketing Science, INFORMS, vol. 16(4), pages 315-337.
    24. ., 2007. "To the 1930s," Chapters,in: Pioneers of Industrial Organization, chapter 10 Edward Elgar Publishing.
    25. Thomas Otter & Timothy J. Gilbride & Greg M. Allenby, 2011. "Testing Models of Strategic Behavior Characterized by Conditional Likelihoods," Marketing Science, INFORMS, vol. 30(4), pages 686-701, July.
    26. Peter S.H. Leeflang & Harald J. van Heerde & Dick Wittink, 2002. "How Promotions Work: SCAN*PRO-Based Evolutionary Model Building," Yale School of Management Working Papers ysm292, Yale School of Management.
    27. Andrew Ainslie & Peter E. Rossi, 1998. "Similarities in Choice Behavior Across Product Categories," Marketing Science, INFORMS, vol. 17(2), pages 91-106.
    28. Yuxin Chen & James D. Hess & Ronald T. Wilcox & Z. John Zhang, 1999. "Accounting Profits Versus Marketing Profits: A Relevant Metric for Category Management," Marketing Science, INFORMS, vol. 18(3), pages 208-229.
    29. Vincent R. Nijs & Shuba Srinivasan & Koen Pauwels, 2007. "Retail-Price Drivers and Retailer Profits," Marketing Science, INFORMS, vol. 26(4), pages 473-487, 07-08.
    30. J. Miguel Villas-Boas & Russell S. Winer, 1999. "Endogeneity in Brand Choice Models," Management Science, INFORMS, vol. 45(10), pages 1324-1338, October.
    31. Fruhwirth-Schnatter, Sylvia & Tuchler, Regina & Otter, Thomas, 2004. "Bayesian Analysis of the Heterogeneity Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 22(1), pages 2-15, January.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. repec:eee:ejores:v:264:y:2018:i:2:p:558-569 is not listed on IDEAS


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:orspec:v:39:y:2017:i:2:d:10.1007_s00291-016-0459-6. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.