IDEAS home Printed from https://ideas.repec.org/a/eee/ijrema/v25y2008i1p22-33.html
   My bibliography  Save this article

Estimating the SCAN⁎PRO model of store sales: HB, FM or just OLS?

Author

Listed:
  • Andrews, Rick L.
  • Currim, Imran S.
  • Leeflang, Peter
  • Lim, Jooseop

Abstract

In this paper we investigate whether consideration of store-level heterogeneity in marketing mix effects improves the accuracy of the marketing mix elasticities, fit, and forecasting accuracy of the widely-applied SCAN⁎PRO model of store sales. Models with continuous and discrete representations of heterogeneity, estimated using hierarchical Bayes (HB) and finite mixture (FM) techniques, respectively, are empirically compared to the original model, which does not account for store-level heterogeneity in marketing mix effects, and is estimated using ordinary least squares (OLS). The empirical comparisons are conducted in two contexts: Dutch store-level scanner data for the shampoo product category, and an extensive simulation experiment. The simulation investigates how between- and within-segment variance in marketing mix effects, error variance, the number of weeks of data, and the number of stores impact the accuracy of marketing mix elasticities, model fit, and forecasting accuracy. Contrary to expectations, accommodating store-level heterogeneity does not improve the accuracy of marketing mix elasticities relative to the homogeneous SCAN⁎PRO model, suggesting that little may be lost by employing the original homogeneous SCAN⁎PRO model estimated using ordinary least squares. Improvements in fit and forecasting accuracy are also fairly modest. We pursue an explanation for this result since research in other contexts has shown clear advantages from assuming some type of heterogeneity in market response models. In an Afterthought section, we comment on the controversial nature of our result, distinguishing factors inherent to household-level data and associated models vs. general store-level data and associated models vs. the unique SCAN⁎PRO model specification.

Suggested Citation

  • Andrews, Rick L. & Currim, Imran S. & Leeflang, Peter & Lim, Jooseop, 2008. "Estimating the SCAN⁎PRO model of store sales: HB, FM or just OLS?," International Journal of Research in Marketing, Elsevier, vol. 25(1), pages 22-33.
  • Handle: RePEc:eee:ijrema:v:25:y:2008:i:1:p:22-33
    DOI: 10.1016/j.ijresmar.2007.10.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167811607000675
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijresmar.2007.10.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Foekens, Eijte W. & Leeflang, Peter S. H. & Wittink, Dick R., 1994. "A comparison and an exploration of the forecasting accuracy of a loglinear model at different levels of aggregation," International Journal of Forecasting, Elsevier, vol. 10(2), pages 245-261, September.
    2. Harald J. van Heerde & Peter S. H. Leeflang & Dick R. Wittink, 2002. "How Promotions Work: Scan Pro-Based Evolutionary Model Building," Schmalenbach Business Review (sbr), LMU Munich School of Management, vol. 54(3), pages 198-220, July.
    3. Leeflang, P.S.H. & Wittink, Dick R., 2000. "Building models for marketing decisions: past, present and future," Research Report 00F20, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
    4. repec:dgr:rugsom:00f20 is not listed on IDEAS
    5. Alan L. Montgomery, 1997. "Creating Micro-Marketing Pricing Strategies Using Supermarket Scanner Data," Marketing Science, INFORMS, vol. 16(4), pages 315-337.
    6. Rick L. Andrews & Andrew Ainslie & Imran S. Currim, 2008. "On the Recoverability of Choice Behaviors with Random Coefficients Choice Models in the Context of Limited Data and Unobserved Effects," Management Science, INFORMS, vol. 54(1), pages 83-99, January.
    7. Peter S.H. Leeflang & Harald J. van Heerde & Dick Wittink, 2002. "How Promotions Work: SCAN*PRO-Based Evolutionary Model Building," Yale School of Management Working Papers ysm292, Yale School of Management.
    8. Peter J. Lenk & Wayne S. DeSarbo & Paul E. Green & Martin R. Young, 1996. "Hierarchical Bayes Conjoint Analysis: Recovery of Partworth Heterogeneity from Reduced Experimental Designs," Marketing Science, INFORMS, vol. 15(2), pages 173-191.
    9. Vanhuele, Marc & Dekimpe, Marnik G. & Sharma, Sunil & Morrison, Donald G., 1995. "Probability Models for Duration: The Data Don't Tell the Whole Story," Organizational Behavior and Human Decision Processes, Elsevier, vol. 62(1), pages 1-13, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eliashberg, Jehoshua & Hegie, Quintus & Ho, Jason & Huisman, Dennis & Miller, Steven J. & Swami, Sanjeev & Weinberg, Charles B. & Wierenga, Berend, 2009. "Demand-driven scheduling of movies in a multiplex," International Journal of Research in Marketing, Elsevier, vol. 26(2), pages 75-88.
    2. Ma, Shaohui & Fildes, Robert, 2021. "Retail sales forecasting with meta-learning," European Journal of Operational Research, Elsevier, vol. 288(1), pages 111-128.
    3. Macé, Sandrine, 2012. "The Impact and Determinants of Nine-Ending Pricing in Grocery Retailing," Journal of Retailing, Elsevier, vol. 88(1), pages 115-130.
    4. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    5. Leeflang, Peter S.H. & Bijmolt, Tammo H.A. & van Doorn, Jenny & Hanssens, Dominique M. & van Heerde, Harald J. & Verhoef, Peter C. & Wieringa, Jaap E., 2009. "Creating lift versus building the base: Current trends in marketing dynamics," International Journal of Research in Marketing, Elsevier, vol. 26(1), pages 13-20.
    6. Weber, Anett & Steiner, Winfried J., 2021. "Modeling price response from retail sales: An empirical comparison of models with different representations of heterogeneity," European Journal of Operational Research, Elsevier, vol. 294(3), pages 843-859.
    7. Fildes, Robert & Ma, Shaohui & Kolassa, Stephan, 2022. "Retail forecasting: Research and practice," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1283-1318.
    8. Leeflang, Peter, 2011. "Paving the way for “distinguished marketing”," International Journal of Research in Marketing, Elsevier, vol. 28(2), pages 76-88.
    9. Gür Ali, Özden & Gürlek, Ragıp, 2020. "Automatic Interpretable Retail forecasting with promotional scenarios," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1389-1406.
    10. Fildes, Robert & Ma, Shaohui & Kolassa, Stephan, 2019. "Retail forecasting: research and practice," MPRA Paper 89356, University Library of Munich, Germany.
    11. Anett Weber & Winfried J. Steiner & Stefan Lang, 2017. "A comparison of semiparametric and heterogeneous store sales models for optimal category pricing," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(2), pages 403-445, March.
    12. Ma, Shaohui & Fildes, Robert & Huang, Tao, 2016. "Demand forecasting with high dimensional data: The case of SKU retail sales forecasting with intra- and inter-category promotional information," European Journal of Operational Research, Elsevier, vol. 249(1), pages 245-257.
    13. Andrea Baldin & Trine Bille & Andrea Ellero & Daniela Favaretto, 2018. "Revenue and attendance simultaneous optimization in performing arts organizations," Journal of Cultural Economics, Springer;The Association for Cultural Economics International, vol. 42(4), pages 677-700, November.
    14. Philipp Aschersleben & Winfried J. Steiner, 2022. "A semiparametric approach to estimating reference price effects in sales response models," Journal of Business Economics, Springer, vol. 92(4), pages 591-643, May.
    15. Huang, Tao & Fildes, Robert & Soopramanien, Didier, 2014. "The value of competitive information in forecasting FMCG retail product sales and the variable selection problem," European Journal of Operational Research, Elsevier, vol. 237(2), pages 738-748.
    16. Lang, Stefan & Steiner, Winfried J. & Weber, Anett & Wechselberger, Peter, 2015. "Accommodating heterogeneity and nonlinearity in price effects for predicting brand sales and profits," European Journal of Operational Research, Elsevier, vol. 246(1), pages 232-241.
    17. Andrea Baldin & Trine Bille & Andrea Ellero & Daniela Favaretto, 2016. "Multiobjective optimization model for pricing and seat allocation problem in non profit performing arts organization," Working Papers 20, Venice School of Management - Department of Management, Università Ca' Foscari Venezia.
    18. Evgeny A. Antipov & Elena B. Pokryshevskaya, 2020. "Interpretable machine learning for demand modeling with high-dimensional data using Gradient Boosting Machines and Shapley values," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 19(5), pages 355-364, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weber, Anett & Steiner, Winfried J., 2021. "Modeling price response from retail sales: An empirical comparison of models with different representations of heterogeneity," European Journal of Operational Research, Elsevier, vol. 294(3), pages 843-859.
    2. Philipp Aschersleben & Winfried J. Steiner, 2022. "A semiparametric approach to estimating reference price effects in sales response models," Journal of Business Economics, Springer, vol. 92(4), pages 591-643, May.
    3. Antonis A. Michis, 2023. "Retail distribution evaluation in brand-level sales response models," Journal of Marketing Analytics, Palgrave Macmillan, vol. 11(3), pages 366-378, September.
    4. Kurt A. Jetta & Erick W. Rengifo, 2009. "Improved Baseline Sales," Fordham Economics Discussion Paper Series dp2009-02, Fordham University, Department of Economics.
    5. Suresh Divakar & Brian T. Ratchford & Venkatesh Shankar, 2005. "Practice Prize Article—: A Multichannel, Multiregion Sales Forecasting Model and Decision Support System for Consumer Packaged Goods," Marketing Science, INFORMS, vol. 24(3), pages 334-350, July.
    6. Anett Weber & Winfried J. Steiner & Stefan Lang, 2017. "A comparison of semiparametric and heterogeneous store sales models for optimal category pricing," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(2), pages 403-445, March.
    7. Lang, Stefan & Steiner, Winfried J. & Weber, Anett & Wechselberger, Peter, 2015. "Accommodating heterogeneity and nonlinearity in price effects for predicting brand sales and profits," European Journal of Operational Research, Elsevier, vol. 246(1), pages 232-241.
    8. Guhl, Daniel & Baumgartner, Bernhard & Kneib, Thomas & Steiner, Winfried J., 2018. "Estimating time-varying parameters in brand choice models: A semiparametric approach," International Journal of Research in Marketing, Elsevier, vol. 35(3), pages 394-414.
    9. Leeflang, Peter, 2011. "Paving the way for “distinguished marketing”," International Journal of Research in Marketing, Elsevier, vol. 28(2), pages 76-88.
    10. Huber, Jakob & Stuckenschmidt, Heiner, 2020. "Daily retail demand forecasting using machine learning with emphasis on calendric special days," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1420-1438.
    11. Hein, Maren & Goeken, Nils & Kurz, Peter & Steiner, Winfried J., 2022. "Using Hierarchical Bayes draws for improving shares of choice predictions in conjoint simulations: A study based on conjoint choice data," European Journal of Operational Research, Elsevier, vol. 297(2), pages 630-651.
    12. B. P. S. Murthi & Sumit Sarkar, 2003. "The Role of the Management Sciences in Research on Personalization," Management Science, INFORMS, vol. 49(10), pages 1344-1362, October.
    13. Arvan, Meysam & Fahimnia, Behnam & Reisi, Mohsen & Siemsen, Enno, 2019. "Integrating human judgement into quantitative forecasting methods: A review," Omega, Elsevier, vol. 86(C), pages 237-252.
    14. Evgeny A. Antipov & Elena B. Pokryshevskaya, 2020. "Interpretable machine learning for demand modeling with high-dimensional data using Gradient Boosting Machines and Shapley values," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 19(5), pages 355-364, October.
    15. Peter E. Rossi & Greg M. Allenby, 2003. "Bayesian Statistics and Marketing," Marketing Science, INFORMS, vol. 22(3), pages 304-328, July.
    16. Parreño-Selva, Josefa & Mas-Ruiz, Francisco J. & Ruiz-Conde, Enar, 2017. "The effects of price promotion on relative virtue and vice food products," International Food and Agribusiness Management Review, International Food and Agribusiness Management Association, vol. 20(5).
    17. van Donselaar, K.H. & Peters, J. & de Jong, A. & Broekmeulen, R.A.C.M., 2016. "Analysis and forecasting of demand during promotions for perishable items," International Journal of Production Economics, Elsevier, vol. 172(C), pages 65-75.
    18. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    19. Sinha, Ashish & Gazley, Aaron & Ashill, Nicholas J., 2008. "Measuring Customer Based Brand Equity using Hierarchical Bayes Methodology," Australasian marketing journal, Elsevier, vol. 16(1), pages 3-19.
    20. B. P. S. Murthi & Sumit Sarkar, 2003. "The Role of the Mangement Sciences in Research on Personalization," Review of Marketing Science Working Papers 2-2-1025, Berkeley Electronic Press.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ijrema:v:25:y:2008:i:1:p:22-33. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/international-journal-of-research-in-marketing/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.