IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v78y2016i1p3-30.html
   My bibliography  Save this article

Data envelope fitting with constrained polynomial splines

Author

Listed:
  • Abdelaati Daouia
  • Hohsuk Noh
  • Byeong U. Park

Abstract

Estimation of support frontiers and boundaries often involves monotone and/or concave edge data smoothing. This estimation problem arises in various unrelated contexts, such as optimal cost and production assessments in econometrics and master curve prediction in the reliability programs of nuclear reactors. Very few constrained esti- mators of the support boundary of a bivariate distribution have been introduced in the literature. They are based on simple envelopment techniques which often suffer from lack of precision and smoothness. Combining the edge estimation idea of Hall, Park and Stern with the quadratic spline smoothing method of He and Shi, we develop a novel constrained fit of the boundary curve which benefits from the smoothness of spline approximation and the computational efficiency of linear programs. Using cubic splines is also feasible and more attractive under multiple shape constraints; computing the optimal spline smoother is then formulated into a second-order cone programming problem. Both constrained quadratic and cubic spline frontiers have a similar level of computational complexity to the unconstrained fits and inherit their asymptotic properties. The utility of this method is illustrated through applications to some real datasets and simulation evidence is also presented to show its superiority over the best known methods.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Abdelaati Daouia & Hohsuk Noh & Byeong U. Park, 2016. "Data envelope fitting with constrained polynomial splines," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(1), pages 3-30, January.
  • Handle: RePEc:bla:jorssb:v:78:y:2016:i:1:p:3-30
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/rssb.12098
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Hall, Peter & Park, Byeong U. & Stern, Steven E., 1998. "On Polynomial Estimators of Frontiers and Boundaries," Journal of Multivariate Analysis, Elsevier, vol. 66(1), pages 71-98, July.
    2. Sokbae Lee & Oliver Linton & Yoon-Jae Whang, 2009. "Testing for Stochastic Monotonicity," Econometrica, Econometric Society, vol. 77(2), pages 585-602, March.
    3. GIJBELS, Irène & MAMMEN, Enno & PARK, Byeong U. & SIMAR, Léopold, 1997. "On estimation of monotone and concave frontier functions," CORE Discussion Papers 1997031, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    4. Tsybakov, A.B. & Korostelev, A.P. & Simar, L., 1992. "Efficient Estimation of Monotone Boundaries," Papers 9209, Catholique de Louvain - Institut de statistique.
    5. Daouia, Abdelaati & Florens, Jean-Pierre & Simar, Léopold, 2009. "Frontier Estimation and Extreme Values Theory," TSE Working Papers 10-165, Toulouse School of Economics (TSE).
    6. Stéphane Girard, 2003. "Extreme Values and Haar Series Estimates of Point Process Boundaries," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 30(2), pages 369-384.
    7. Hardle, W. & Park, B. U. & Tsybakov, A. B., 1995. "Estimation of Non-sharp Support Boundaries," Journal of Multivariate Analysis, Elsevier, vol. 55(2), pages 205-218, November.
    8. Jeong, Seok-Oh & Simar, Léopold, 2006. "Linearly interpolated FDH efficiency score for nonconvex frontiers," Journal of Multivariate Analysis, Elsevier, vol. 97(10), pages 2141-2161, November.
    9. Kneip, Alois & Simar, Léopold & Wilson, Paul W., 2008. "Asymptotics And Consistent Bootstraps For Dea Estimators In Nonparametric Frontier Models," Econometric Theory, Cambridge University Press, vol. 24(06), pages 1663-1697, December.
    10. Hazelton, Martin L. & Turlach, Berwin A., 2011. "Semiparametric regression with shape-constrained penalized splines," Computational Statistics & Data Analysis, Elsevier, vol. 55(10), pages 2871-2879, October.
    11. Kevin Murray & Samuel Müller & Berwin Turlach, 2013. "Revisiting fitting monotone polynomials to data," Computational Statistics, Springer, vol. 28(5), pages 1989-2005, October.
    12. Christophe Croux & Irène Gijbels & Ilaria Prosdocimi, 2012. "Robust Estimation of Mean and Dispersion Functions in Extended Generalized Additive Models," Biometrics, The International Biometric Society, vol. 68(1), pages 31-44, March.
    13. Hall, Peter & Park, Byeong U., 2004. "Bandwidth choice for local polynomial estimation of smooth boundaries," Journal of Multivariate Analysis, Elsevier, vol. 91(2), pages 240-261, November.
    14. Hall, Peter & Nussbaum, Michael & Stern, Steven E., 1997. "On the Estimation of a Support Curve of Indeterminate Sharpness," Journal of Multivariate Analysis, Elsevier, vol. 62(2), pages 204-232, August.
    15. Hwang, J. H. & Park, B. U. & Ryu, W., 2002. "Limit theorems for boundary function estimators," Statistics & Probability Letters, Elsevier, vol. 59(4), pages 353-360, October.
    16. S.-O. Jeong & B. U. Park, 2006. "Large Sample Approximation of the Distribution for Convex-Hull Estimators of Boundaries," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 33(1), pages 139-151.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:78:y:2016:i:1:p:3-30. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum). General contact details of provider: http://edirc.repec.org/data/rssssea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.