IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v66y1998i1p71-98.html
   My bibliography  Save this article

On Polynomial Estimators of Frontiers and Boundaries

Author

Listed:
  • Hall, Peter
  • Park, Byeong U.
  • Stern, Steven E.

Abstract

Motivated by problems of frontier estimation in productivity analysis, and boundary estimation in scatter-point image analysis, we consider polynomial-based estimators of the edge of a distribution. Our aim is to develop methods for correcting polynomial-type estimators of bias, and for constructing simultaneous confidence bands for the data edge. We tackle this problem by first deriving large-sample approximations to distributions of polynomial-based edge estimators, and then developing algorithms for simulating from them so as to produce Monte Carlo approximations to the distribution of the difference between the true edge and its estimator. This involves applying representations for joint extreme value distributions. The majority of attention is focused on the parametric case, but nonparametric problems, where polynomial approximations are fitted locally, are also considered.

Suggested Citation

  • Hall, Peter & Park, Byeong U. & Stern, Steven E., 1998. "On Polynomial Estimators of Frontiers and Boundaries," Journal of Multivariate Analysis, Elsevier, vol. 66(1), pages 71-98, July.
  • Handle: RePEc:eee:jmvana:v:66:y:1998:i:1:p:71-98
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(98)91738-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Hardle, Wolfgang & Tsybakov, A. B., 1993. "How sensitive are average derivatives?," Journal of Econometrics, Elsevier, vol. 58(1-2), pages 31-48, July.
    2. SIMAR , Léopold, 1995. "Aspects of Statistical Analysis in DEA-Type Frontier Models," LIDAM Discussion Papers CORE 1995061, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    3. Hardle, Wolfgang & Tsybakov, A. B., 1993. "How sensitive are average derivatives?," Journal of Econometrics, Elsevier, vol. 58(1-2), pages 31-48, July.
    4. Korostelev, A. P. & Simar, L. & Tsybakov, A. B., 1995. "Estimation of monotone boundaries," LIDAM Reprints CORE 1178, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    5. Korostelev, A.P. & Simar , L. & Tsybakov, A.B., 1995. "On estimation of monotone and convex boundaries," LIDAM Reprints CORE 1139, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daouia, Abdelaati & Florens, Jean-Pierre & Simar, Léopold, 2020. "Robust frontier estimation from noisy data: A Tikhonov regularization approach," Econometrics and Statistics, Elsevier, vol. 14(C), pages 1-23.
    2. Abdelaati Daouia & Byeong U. Park, 2013. "On Projection-type Estimators of Multivariate Isotonic Functions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(2), pages 363-386, June.
    3. Girard, Séphane & Jacob, Pierre, 2009. "Frontier estimation with local polynomials and high power-transformed data," Journal of Multivariate Analysis, Elsevier, vol. 100(8), pages 1691-1705, September.
    4. Girard, Stéphane & Guillou, Armelle & Stupfler, Gilles, 2013. "Frontier estimation with kernel regression on high order moments," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 172-189.
    5. Natalie Neumeyer & Leonie Selk & Charles Tillier, 2020. "Semi-parametric transformation boundary regression models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(6), pages 1287-1315, December.
    6. Girard, Stéphane & Jacob, Pierre, 2008. "Frontier estimation via kernel regression on high power-transformed data," Journal of Multivariate Analysis, Elsevier, vol. 99(3), pages 403-420, March.
    7. Jeong, Seok-Oh & Park, Byeong U., 2004. "Limit Distribution of Convex-Hull Estimators of Boundaries," Papers 2004,39, Humboldt University of Berlin, Center for Applied Statistics and Economics (CASE).
    8. Daouia, Abdelaati & Florens, Jean-Pierre & Simar, Léopold, 2009. "Frontier Estimation and Extreme Values Theory," IDEI Working Papers 611, Institut d'Économie Industrielle (IDEI), Toulouse.
    9. Martins-Filho, Carlos & Yao, Feng, 2008. "A smooth nonparametric conditional quantile frontier estimator," Journal of Econometrics, Elsevier, vol. 143(2), pages 317-333, April.
    10. Abdelaati Daouia & Hohsuk Noh & Byeong U. Park, 2016. "Data envelope fitting with constrained polynomial splines," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(1), pages 3-30, January.
    11. Leonie Selk & Charles Tillier & Orlando Marigliano, 2022. "Multivariate boundary regression models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(1), pages 400-426, March.
    12. U. Park, Byeong, 2001. "On estimating the slope of increasing boundaries," Statistics & Probability Letters, Elsevier, vol. 52(1), pages 69-72, March.
    13. Hwang, J. H. & Park, B. U. & Ryu, W., 2002. "Limit theorems for boundary function estimators," Statistics & Probability Letters, Elsevier, vol. 59(4), pages 353-360, October.
    14. Hall, Peter & Park, Byeong U., 2004. "Bandwidth choice for local polynomial estimation of smooth boundaries," Journal of Multivariate Analysis, Elsevier, vol. 91(2), pages 240-261, November.
    15. Daouia, Abdelaati & Laurent, Thibault & Noh, Hohsuk, 2017. "npbr: A Package for Nonparametric Boundary Regression in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 79(i09).
    16. Léopold Simar & Paul W. Wilson, 2015. "Statistical Approaches for Non-parametric Frontier Models: A Guided Tour," International Statistical Review, International Statistical Institute, vol. 83(1), pages 77-110, April.
    17. Daouia, Abdelaati & Girard, Stéphane & Guillou, Armelle, 2014. "A Γ-moment approach to monotonic boundary estimation," Journal of Econometrics, Elsevier, vol. 178(2), pages 727-740.
    18. Cheng, Ming-Yen & Hall, Peter, 2006. "Methods for tracking support boundaries with corners," Journal of Multivariate Analysis, Elsevier, vol. 97(8), pages 1870-1893, September.
    19. Martins-Filho, Carlos & Yao, Feng, 2007. "Nonparametric frontier estimation via local linear regression," Journal of Econometrics, Elsevier, vol. 141(1), pages 283-319, November.
    20. Onizuka, Takahiro & Iwashige, Fumiya & Hashimoto, Shintaro, 2024. "Bayesian boundary trend filtering," Computational Statistics & Data Analysis, Elsevier, vol. 191(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Girard, Stéphane & Guillou, Armelle & Stupfler, Gilles, 2013. "Frontier estimation with kernel regression on high order moments," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 172-189.
    2. Kneip, Alois & Simar, Léopold & Wilson, Paul W., 2008. "Asymptotics And Consistent Bootstraps For Dea Estimators In Nonparametric Frontier Models," Econometric Theory, Cambridge University Press, vol. 24(6), pages 1663-1697, December.
    3. Girard, Séphane & Jacob, Pierre, 2009. "Frontier estimation with local polynomials and high power-transformed data," Journal of Multivariate Analysis, Elsevier, vol. 100(8), pages 1691-1705, September.
    4. Nasrabadi, Nasim & Dehnokhalaji, Akram & Korhonen, Pekka & Lokman, Banu & Wallenius, Jyrki, 2022. "Robustness of efficiency scores in data envelopment analysis with interval scale data," European Journal of Operational Research, Elsevier, vol. 297(3), pages 1151-1161.
    5. Alois Kneip & Léopold Simar & Paul Wilson, 2011. "A Computationally Efficient, Consistent Bootstrap for Inference with Non-parametric DEA Estimators," Computational Economics, Springer;Society for Computational Economics, vol. 38(4), pages 483-515, November.
    6. Biau, Gérard & Cadre, Benoît & Pelletier, Bruno, 2008. "Exact rates in density support estimation," Journal of Multivariate Analysis, Elsevier, vol. 99(10), pages 2185-2207, November.
    7. Jesús T. Pastor & JosÉ L. Ruiz & Inmaculada Sirvent, 2002. "A Statistical Test for Nested Radial Dea Models," Operations Research, INFORMS, vol. 50(4), pages 728-735, August.
    8. Girard, Stéphane & Jacob, Pierre, 2008. "Frontier estimation via kernel regression on high power-transformed data," Journal of Multivariate Analysis, Elsevier, vol. 99(3), pages 403-420, March.
    9. McDonald, John, 2009. "Using least squares and tobit in second stage DEA efficiency analyses," European Journal of Operational Research, Elsevier, vol. 197(2), pages 792-798, September.
    10. Ichimura, Hidehiko & Todd, Petra E., 2007. "Implementing Nonparametric and Semiparametric Estimators," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 74, Elsevier.
    11. Xia, Yingcun & Härdle, Wolfgang Karl & Linton, Oliver, 2009. "Optimal smoothing for a computationally and statistically efficient single index estimator," SFB 649 Discussion Papers 2009-028, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    12. Leopold Simar & Valentin Zelenyuk, 2006. "On Testing Equality of Distributions of Technical Efficiency Scores," Econometric Reviews, Taylor & Francis Journals, vol. 25(4), pages 497-522.
    13. Qihua Wang & Tao Zhang & Wolfgang Karl Härdle, 2016. "An Extended Single-index Model with Missing Response at Random," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(4), pages 1140-1152, December.
    14. Kim, Peter T. & Koo, Ja-Yong & Park, Heon Jin, 2004. "Sharp minimaxity and spherical deconvolution for super-smooth error distributions," Journal of Multivariate Analysis, Elsevier, vol. 90(2), pages 384-392, August.
    15. Véronique Flambard & Pierre Lasserre & Pierre Mohnen, 2007. "Snow removal auctions in Montreal: costs, informational rents, and procurement management," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 40(1), pages 245-277, February.
    16. Kneip, Alois & Simar, Léopold & Van Keilegom, Ingrid, 2015. "Frontier estimation in the presence of measurement error with unknown variance," Journal of Econometrics, Elsevier, vol. 184(2), pages 379-393.
    17. Huybrechts F. Bindele & Ash Abebe & Karlene N. Meyer, 2018. "General rank-based estimation for regression single index models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(5), pages 1115-1146, October.
    18. Yiping Yang & Tiejun Tong & Gaorong Li, 2019. "SIMEX estimation for single-index model with covariate measurement error," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 103(1), pages 137-161, March.
    19. Almekinders, Geert J & Eijffinger, Sylvester C W, 1994. "Daily Bundesbank and Federal Reserve Interventions: Are They a Reaction to Changes in the Level and Volatility of the DM/$-Rate?," Empirical Economics, Springer, vol. 19(1), pages 111-130.
    20. Jaume Puig, 1999. "Radial measures of public services deficit for regional allocation of public funds," Working Papers, Research Center on Health and Economics 439, Department of Economics and Business, Universitat Pompeu Fabra.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:66:y:1998:i:1:p:71-98. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.