IDEAS home Printed from https://ideas.repec.org/p/cor/louvrp/1139.html
   My bibliography  Save this paper

On estimation of monotone and convex boundaries

Author

Listed:
  • KOROSTELEV, A.P.
  • SIMAR , L.
  • TSYBAKOV, A.B.

Abstract

No abstract is available for this item.

Suggested Citation

  • Korostelev, A.P. & Simar , L. & Tsybakov, A.B., 1995. "On estimation of monotone and convex boundaries," LIDAM Reprints CORE 1139, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  • Handle: RePEc:cor:louvrp:1139
    Note: In : Publications de l'Institut de Statistique de l'Université de Paris, XXXIX (1), 3-18, 1995
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kneip, A. & Simar, L. & Van Keilegom I., 2010. "Boundary estimation in the presence of measurement error with unknown variance," LIDAM Discussion Papers ISBA 2010046, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    2. Gilbert, R. Alton & Wheelock, David C. & Wilson, Paul W., 2004. "New evidence on the Fed's productivity in providing payments services," Journal of Banking & Finance, Elsevier, vol. 28(9), pages 2175-2190, September.
    3. Zelenyuk, Valentin, 2020. "Aggregation of inputs and outputs prior to Data Envelopment Analysis under big data," European Journal of Operational Research, Elsevier, vol. 282(1), pages 172-187.
    4. Chen, Kun & Song, Yao-yao & Pan, Jiao-feng & Yang, Guo-liang, 2020. "Measuring destocking performance of the Chinese real estate industry: A DEA-Malmquist approach," Socio-Economic Planning Sciences, Elsevier, vol. 69(C).
    5. Timo Kuosmanen & Andrew L. Johnson, 2010. "Data Envelopment Analysis as Nonparametric Least-Squares Regression," Operations Research, INFORMS, vol. 58(1), pages 149-160, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cor:louvrp:1139. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/coreebe.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Alain GILLIS (email available below). General contact details of provider: https://edirc.repec.org/data/coreebe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.