IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v91y2004i2p240-261.html
   My bibliography  Save this article

Bandwidth choice for local polynomial estimation of smooth boundaries

Author

Listed:
  • Hall, Peter
  • Park, Byeong U.

Abstract

Local polynomial methods hold considerable promise for boundary estimation, where they offer unmatched flexibility and adaptivity. Most rival techniques provide only a single order of approximation; local polynomial approaches allow any order desired. Their more conventional rivals, for example high-order kernel methods in the context of regression, do not have attractive versions in the case of boundary estimation. However, the adoption of local polynomial methods for boundary estimation is inhibited by lack of knowledge about their properties, in particular about the manner in which they are influenced by bandwidth; and by the absence of techniques for empirical bandwidth choice. In the present paper we detail the way in which bandwidth selection determines mean squared error of local polynomial boundary estimators, showing that it is substantially more complex than in regression settings. For example, asymptotic formulae for bias and variance contributions to mean squared error no longer decompose into monotone functions of bandwidth. Nevertheless, once these properties are understood, relatively simple empirical bandwidth selection methods can be developed. We suggest a new approach to both local and global bandwidth choice, and describe its properties.

Suggested Citation

  • Hall, Peter & Park, Byeong U., 2004. "Bandwidth choice for local polynomial estimation of smooth boundaries," Journal of Multivariate Analysis, Elsevier, vol. 91(2), pages 240-261, November.
  • Handle: RePEc:eee:jmvana:v:91:y:2004:i:2:p:240-261
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(03)00177-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. GIJBELS, Irène & MAMMEN, Enno & PARK, Byeong U. & SIMAR, Léopold, 1997. "On estimation of monotone and concave frontier functions," LIDAM Discussion Papers CORE 1997031, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. Tsybakov, A.B. & Korostelev, A.P. & Simar, L., 1992. "Efficient Estimation of Monotone Boundaries," Papers 9209, Catholique de Louvain - Institut de statistique.
    3. Kneip, Alois & Park, Byeong U. & Simar, Léopold, 1998. "A Note On The Convergence Of Nonparametric Dea Estimators For Production Efficiency Scores," Econometric Theory, Cambridge University Press, vol. 14(6), pages 783-793, December.
    4. Park, B.U. & Simar, L. & Weiner, Ch., 2000. "The Fdh Estimator For Productivity Efficiency Scores," Econometric Theory, Cambridge University Press, vol. 16(6), pages 855-877, December.
    5. Hall, Peter & Park, Byeong U. & Stern, Steven E., 1998. "On Polynomial Estimators of Frontiers and Boundaries," Journal of Multivariate Analysis, Elsevier, vol. 66(1), pages 71-98, July.
    6. Korostelev, A. P. & Simar, L. & Tsybakov, A. B., 1995. "Estimation of monotone boundaries," LIDAM Reprints CORE 1178, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    7. Hardle, W. & Park, B. U. & Tsybakov, A. B., 1995. "Estimation of Non-sharp Support Boundaries," Journal of Multivariate Analysis, Elsevier, vol. 55(2), pages 205-218, November.
    8. Alcalá, J. T. & Cristóbal, J. A. & González-Manteiga, W., 1999. "Goodness-of-fit test for linear models based on local polynomials," Statistics & Probability Letters, Elsevier, vol. 42(1), pages 39-46, March.
    9. Korostelev, A.P. & Simar , L. & Tsybakov, A.B., 1995. "On estimation of monotone and convex boundaries," LIDAM Reprints CORE 1139, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    10. Rajiv D. Banker, 1993. "Maximum Likelihood, Consistency and Data Envelopment Analysis: A Statistical Foundation," Management Science, INFORMS, vol. 39(10), pages 1265-1273, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Girard, Stéphane & Guillou, Armelle & Stupfler, Gilles, 2013. "Frontier estimation with kernel regression on high order moments," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 172-189.
    2. Abdelaati Daouia & Hohsuk Noh & Byeong U. Park, 2016. "Data envelope fitting with constrained polynomial splines," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(1), pages 3-30, January.
    3. Schick Anton & Wefelmeyer Wolfgang, 2009. "Non-standard behavior of density estimators for sums of squared observations," Statistics & Risk Modeling, De Gruyter, vol. 27(1), pages 55-73, November.
    4. Girard, Stéphane & Jacob, Pierre, 2008. "Frontier estimation via kernel regression on high power-transformed data," Journal of Multivariate Analysis, Elsevier, vol. 99(3), pages 403-420, March.
    5. Ebrahimi, Nader, 2008. "Simultaneous control of false positives and false negatives in multiple hypotheses testing," Journal of Multivariate Analysis, Elsevier, vol. 99(3), pages 437-450, March.
    6. Girard, Séphane & Jacob, Pierre, 2009. "Frontier estimation with local polynomials and high power-transformed data," Journal of Multivariate Analysis, Elsevier, vol. 100(8), pages 1691-1705, September.
    7. Leonie Selk & Charles Tillier & Orlando Marigliano, 2022. "Multivariate boundary regression models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(1), pages 400-426, March.
    8. Daouia, Abdelaati & Laurent, Thibault & Noh, Hohsuk, 2017. "npbr: A Package for Nonparametric Boundary Regression in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 79(i09).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng, Ming-Yen & Hall, Peter, 2006. "Methods for tracking support boundaries with corners," Journal of Multivariate Analysis, Elsevier, vol. 97(8), pages 1870-1893, September.
    2. Zelenyuk, Valentin, 2020. "Aggregation of inputs and outputs prior to Data Envelopment Analysis under big data," European Journal of Operational Research, Elsevier, vol. 282(1), pages 172-187.
    3. Gilbert, R. Alton & Wheelock, David C. & Wilson, Paul W., 2004. "New evidence on the Fed's productivity in providing payments services," Journal of Banking & Finance, Elsevier, vol. 28(9), pages 2175-2190, September.
    4. Léopold Simar & Valentin Zelenyuk, 2007. "Statistical inference for aggregates of Farrell-type efficiencies," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(7), pages 1367-1394.
    5. Kneip, Alois & Simar, Léopold & Wilson, Paul W., 2008. "Asymptotics And Consistent Bootstraps For Dea Estimators In Nonparametric Frontier Models," Econometric Theory, Cambridge University Press, vol. 24(6), pages 1663-1697, December.
    6. Jeong, Seok-Oh & Park, Byeong U., 2004. "Limit Distribution of Convex-Hull Estimators of Boundaries," Papers 2004,39, Humboldt University of Berlin, Center for Applied Statistics and Economics (CASE).
    7. Abdelaati Daouia & Hohsuk Noh & Byeong U. Park, 2016. "Data envelope fitting with constrained polynomial splines," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(1), pages 3-30, January.
    8. Kneip, Alois & Simar, Léopold & Van Keilegom, Ingrid, 2015. "Frontier estimation in the presence of measurement error with unknown variance," Journal of Econometrics, Elsevier, vol. 184(2), pages 379-393.
    9. Daouia, Abdelaati & Florens, Jean-Pierre & Simar, Léopold, 2009. "Frontier Estimation and Extreme Values Theory," IDEI Working Papers 611, Institut d'Économie Industrielle (IDEI), Toulouse.
    10. Wheelock, David C. & Wilson, Paul W., 2008. "Non-parametric, unconditional quantile estimation for efficiency analysis with an application to Federal Reserve check processing operations," Journal of Econometrics, Elsevier, vol. 145(1-2), pages 209-225, July.
    11. Girard, Séphane & Jacob, Pierre, 2009. "Frontier estimation with local polynomials and high power-transformed data," Journal of Multivariate Analysis, Elsevier, vol. 100(8), pages 1691-1705, September.
    12. Martins-Filho, Carlos & Yao, Feng, 2007. "Nonparametric frontier estimation via local linear regression," Journal of Econometrics, Elsevier, vol. 141(1), pages 283-319, November.
    13. Girard, Stéphane & Jacob, Pierre, 2008. "Frontier estimation via kernel regression on high power-transformed data," Journal of Multivariate Analysis, Elsevier, vol. 99(3), pages 403-420, March.
    14. William C. Horrace & Peter Schmidt, 2002. "Confidence Statements for Efficiency Estimates from Stochastic Frontier Models," Econometrics 0206006, University Library of Munich, Germany.
    15. Kneip, A. & Simar, L. & Van Keilegom I., 2010. "Boundary estimation in the presence of measurement error with unknown variance," LIDAM Discussion Papers ISBA 2010046, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    16. Léopold Simar, 2007. "How to improve the performances of DEA/FDH estimators in the presence of noise?," Journal of Productivity Analysis, Springer, vol. 28(3), pages 183-201, December.
    17. Simar, Leopold & Wilson, Paul W., 2007. "Estimation and inference in two-stage, semi-parametric models of production processes," Journal of Econometrics, Elsevier, vol. 136(1), pages 31-64, January.
    18. Alois Kneip & Léopold Simar & Paul Wilson, 2011. "A Computationally Efficient, Consistent Bootstrap for Inference with Non-parametric DEA Estimators," Computational Economics, Springer;Society for Computational Economics, vol. 38(4), pages 483-515, November.
    19. Astrid Cullmann & Christian Hirschhausen, 2008. "Efficiency analysis of East European electricity distribution in transition: legacy of the past?," Journal of Productivity Analysis, Springer, vol. 29(2), pages 155-167, April.
    20. Sickles, Robin C. & Song, Wonho & Zelenyuk, Valentin, 2018. "Econometric Analysis of Productivity: Theory and Implementation in R," Working Papers 18-008, Rice University, Department of Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:91:y:2004:i:2:p:240-261. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.